

On-device AI Startup

Nota Incorporated, which has a philosophy of using AI/ML to make the world more convenient, started from Korea Advanced Institute of Science and Technology(KAIST)

Tae-Ho Kim | CTO

Short Bio

Université de Montréal

KAIST

KAIST B.S. Bio and Brain Engineering, KAIST

KAIST M.S. Electrical Engineering, KAIST

Research Intern, Universite de Montreal (P.I. Yoshua Bengio)

Research Intern, Chinese University of Hong Kong (P.I. Xiaogang Wang)

Senior Research Scientist, KAIST Institute

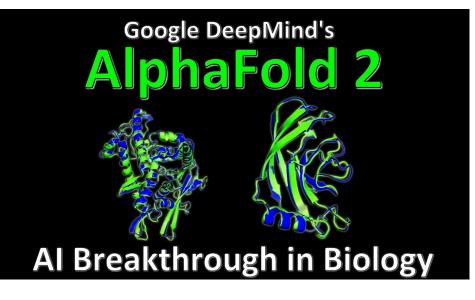
nota CTO / Co-Founder, Nota

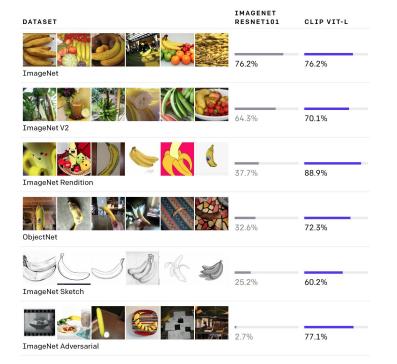
Research interests: Deep learning architecture itself, its application to CV, NLP, and Speech

Table of Contents

- Achievement of Deep Learning
- Compression Methods
- Nota's Solution
 - Quantization
 - Pruning
 - NetsPresso
- Experimental Results
- Q&A

Achievements of Deep Learning





Replying to @DonCubed

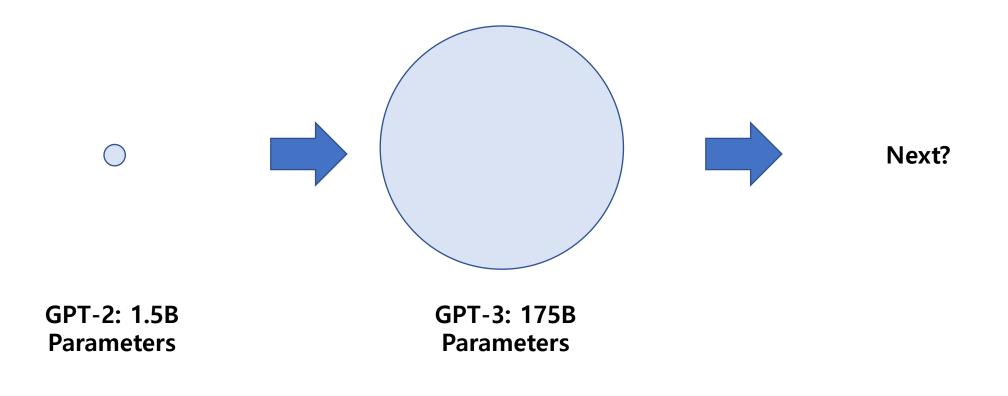
Here is a screenshot from my website (the first two experiences are the GPT-3 generated ones :o).

Future is coming

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology https://openai.com/blog/openai-api/

https://openai.com/blog/clip/

Deep Learning? How big?



It's going to be bigger...

Deep Learning? How big?

Training the Model

GPT-3 is trained using next word prediction, just the same as its GPT-2 predecessor. To train models of different sizes, the batch size is increased according to number of parameters, while the learning rate is decreased accordingly. For example, GPT-3 125M use batch size 0.5M and learning rate of 6.0×10^{-4} , where GPT-3 175B uses batch size 3.2M and learning rate of 0.6×10^{-4} .

We are waiting for OpenAl to reveal more details about the training infrastructure and model implementation. But to put things into perspective, GPT-3 175B model required 3.14E23 FLOPS of computing for training. Even at theoretical 28 TFLOPS for V100 and lowest 3 year reserved cloud pricing we could find, this will take 355 GPU-years and cost \$4.6M for a single training run. Similarly, a single RTX 8000, assuming 15 TFLOPS, would take 665 years to run.

Time is not the only enemy. The 175 Billion parameters needs $175 \times 4 = 700GB$ memory to store in FP32 (each parameter needs 4 Bytes). This is one order of magnitude larger than the maximum memory in a single GPU (48 GB of Quadro RTX 8000). To train the larger models without running out of memory, the OpenAI team uses a mixture of model parallelism within each matrix multiply and model parallelism across the layers of the network. All models were trained on V100 GPU's on the part of a high-bandwidth cluster provided by Microsoft.

In fact, The size of SOTA language model increases by at least a factor of 10 every year: BERT-Large (2018) has 355M parameters, GPT-2 (early 2019) reaches 1.5B, T5 (late 2019) further streches to 11B, GPT-3 (mid-2020) finally gets to 175B. The progress of the sizes of language models clearly outpace the growth of GPU memory. This implies that for NLP, the days of "embarrassingly parallel" is coming to the end, and model parallelization is going to be indispensable for researching SOTA language models.

dels were ft.

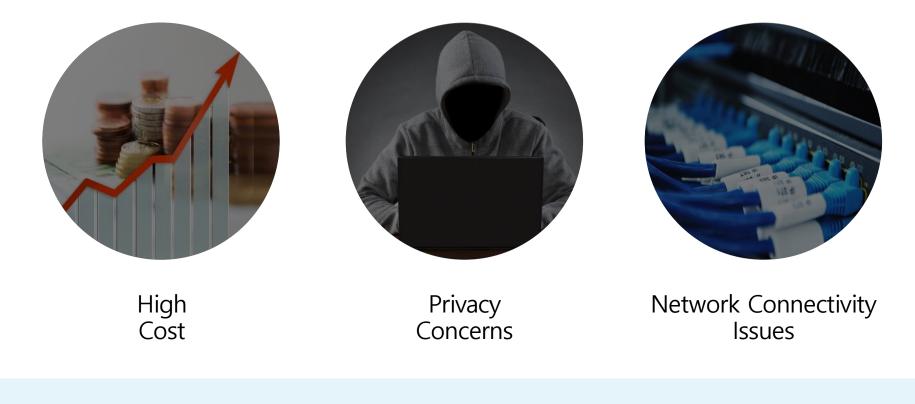
\$4.6M

700GB

355 GPU-years

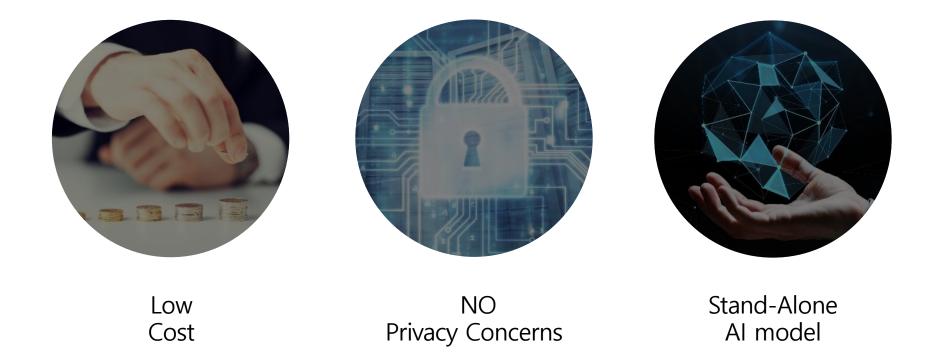
Super-huge!

Challenges of Cloud-based AI



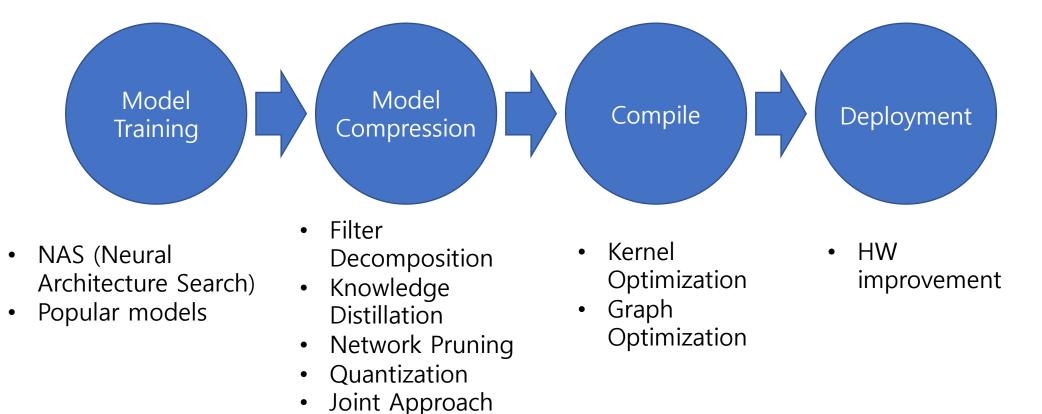
Cloud-based AI becomes Unsustainable

AI Model Compression

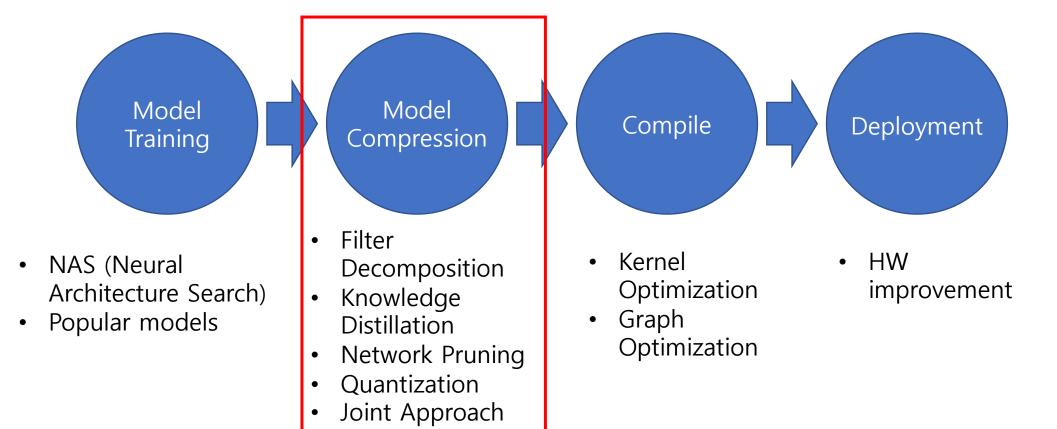


Solution : Nota's AI Model Compression Technology

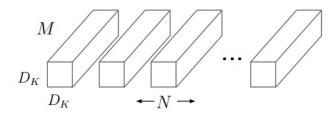
How can we use deep learning at the edge?



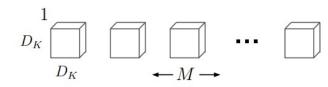
How can we use deep learning at the edge?



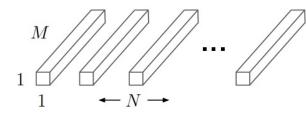
Filter Decomposition



(a) Standard Convolution Filters



(b) Depthwise Convolutional Filters



(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Cost saving

$$\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F}$$
$$\frac{1}{N} + \frac{1}{D_K^2}$$

Types of filter decomposition

- Tucker Decomposition (Z. Zhong, 2019)
- Depthwise Separable Convolution (A. Howard, 2017)
- Network Decoupling (J. Guo, 2018)
- Truncated SVD

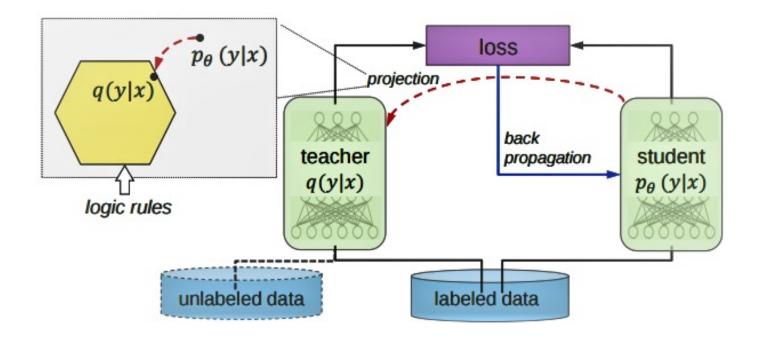
•

11

•••

=

Knowledge Distillation



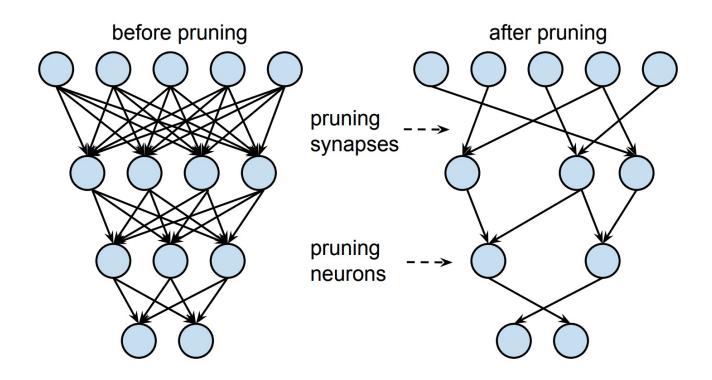
Types of Knowledge Distillation

- Features Distillation
- Softlabel
- Attention Distillation

Techniques

- KD (G. Hinton, 2015)
- FitNets (A Romero, 2014)
- OverHaul KD (B Heo, 2019)
- Relational KD (W Park, 2019)
- ...

Network Pruning



Weight? Filter? Channel?

- Structured Pruning
- Unstructured Pruning

Metrics

- L1 / L2 (S. Han, 2015)
- GM Pruning (Y He, 2018)
- BN Pruning (Y Liu, 2019)

Comparison scope

- Local Pruning
- Global Pruning

Quantization

- Bit? 0 or 1
- 2 bit variable can represent 4 numbers
- 32 bit variable can represent 2^32 numbers

- DoReFa (S Zhou, 2016)
- PACT (J Choi, 2018)
- QAT (Quantization Aware Training)
- PTQ (Post Training Quantization)

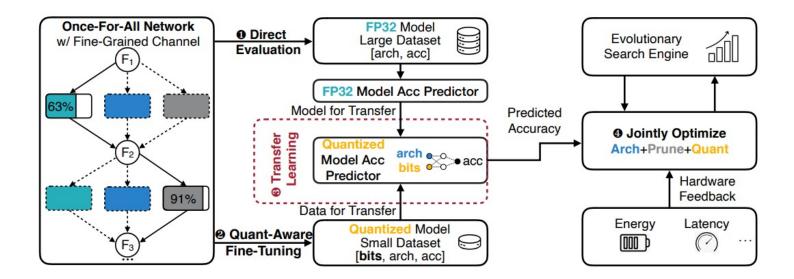
[in bits] index value -0.2 0.3 3 2 1 0 [00] -0.6 ᠿ -0.7 quantization 0.1 -0.6 1 0 0 1 [01] 0 2 [10] 0.4 1.2 3 0.4 0 2 1 3 [11] 1.1 32 bit 2 bit 32 bit

-

•••

Joint Approach

- Once-for-all: Considering pruning, KD, kernel size, and number of layers (ICLR 2020)
- APQ: Joint Search for Network Architecture, Pruning and Quantization Policy (CVPR 2020)



Then what?

- How can we compress the deep learning models with those techniques?
- Nota's answer is coming...

Conventional AI model compression



• Problems of current network compression

- DL engineers manually compress the model
- Compression methods are developed in different places and forms
- Hard to know which compression method or combination to use
- Compression metric **does not fit** to practical metric

NetsPresso (Automatic Model Compression Platform)

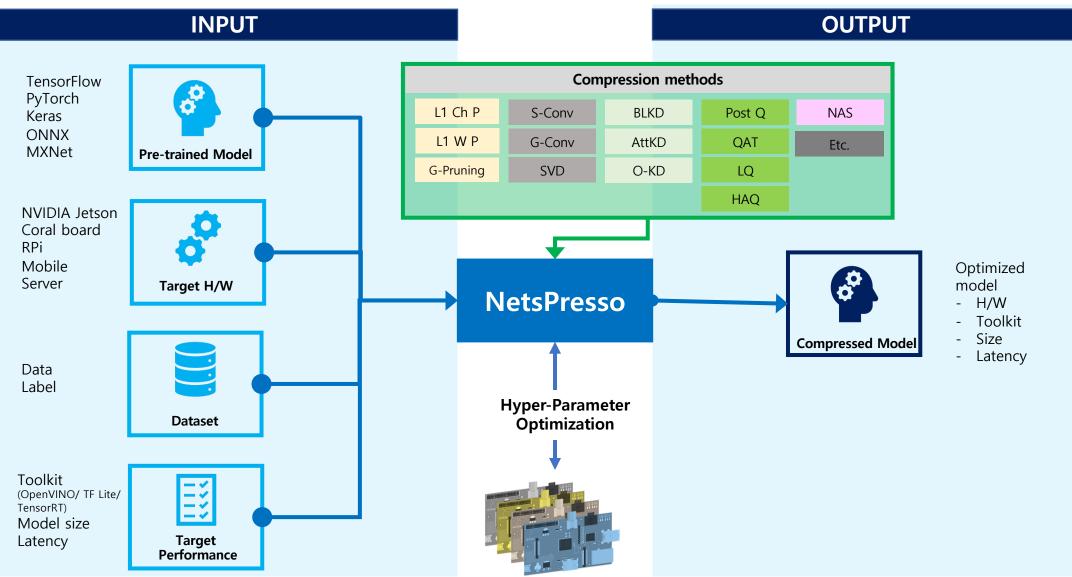
• Problem Solving

- Automatic compression without manpower
- Combination of multiple compression methods
- Fitted metric for practical usage

Nota's Automatic Al Model Compression Platform : NetsPresso

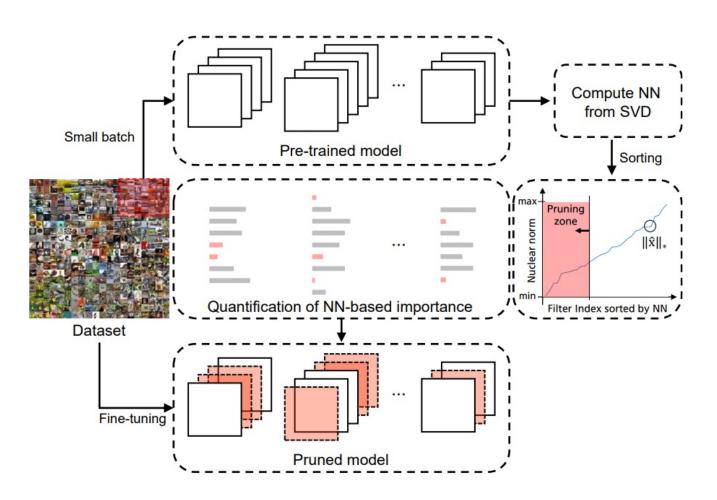
- Optimum compression platform for :
 - ✓ Target task
 - ✓ Target dataset
 - ✓ Target device
 - \checkmark Target accuracy / latency / model size

Structure of NetsPresso

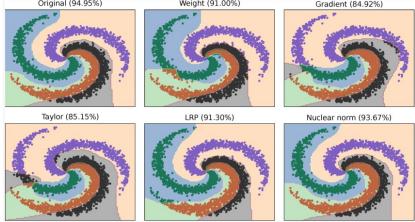


Edge device Pool

Toward Compact Deep Neural Networks via Energy-Aware Pruning (ICCV 2021, To be submitted)



Pruning weight with nuclear norm threshold.



			Res	Net-50		
Criterion	Top-1 Acc (%)		Top-5 Acc (%)			D D 1 (0)
	Pruned	Gap	Pruned	Gap	FLOPs Reduc. (%)	Params Reduc.(%)
He et al. [11]	72.3	-3.85	90.8	-1.4	2.73B (33.25)	N/A
ThiNet-50 [33]	72.04	-0.84	90.67	-0.47	N/A (36.8)	N/A (33.72)
SSS 26 [15]	71.82	-4.33	90.79	-2.08	2.33B (43.0)	15.60M (38.8)
SSS 32 [15]	74.18	-1.97	91.91	-0.96	2.82B (31.0)	18.60M (27.0)
GAL-0.5 [29]	71.95	-4.2	90.94	-1.93	2.33B (43.0)	21.20M (16.8)
GAL-0.5-joint [29]	71.8	-4.35	90.82	-2.05	1.84B (55.0)	19.31M (24.2)
GAL-1 [29]	69.88	-6.27	89.75	-3.12	1.58B (61.3)	14.67M (42.4)
GAL-1-joint [29]	69.31	-6.84	89.12	-3.75	1.11B (72.8)	10.21M (59.9)
GDP-0.5 [28]	69.58	-6.57	90.14	-2.73	1.57B (61.6)	N/A
GDP-0.6 [28]	71.19	-4.96	90.71	-2.16	1.88B (54.0)	N/A
HRank [27]	74.98	-1.17	92.33	-0.54	2.30B (43.7)	16.15M (36.6)
HRank [27]	71.98	-4.17	91.01	-1.86	1.55B (62.1)	13.77M (46.0)
HRank [27]	69.1	-7.05	89.58	-3.29	0.98B (76.0)	8.27M (67.5)
SCOP [44]	75.26	-0.89	92.53	-0.34	1.85B (54.6)	12.29M (51.8)
SFP [8]	74.61	-1.54	92.06	-0.81	2.38B (41.8)	N/A
AutoPruner [32]	74.76	-1.39	92.15	-0.72	2.09B (48.7)	N/A
FPGM [9]	75.59	-0.56	92.27	-0.6	2.55B (37.5)	14.74 (42.2)
Taylor [34]	74.5	-1.68	N/A	N/A	N/A (44.5)	N/A (44.9)
RRBP [51]	73	-3.1	91	-1.9	N/A	N/A (54.5)
Propose method	75.25	-0.89	92.49	-0.37	1.52B (62.8)	11.05M (56.7)
	72.28	-3.87	90.934	-1.936	0.95B (76.7)	8.02M (68.6)

Automatic Network Adaptation for Ultra-Low Uniform-Precision Quantization (IJCAI 2021, submitted)

Input:		Due et et -
Split the training set into two dis-joint sets: Dweight	Uniform	Precisio
and $D_{arch} (n(D_{weight}) = n(D_{arch}))$	Quantiza	tion
Search Parameter: $\{\alpha_1^l, \alpha_2^l,, \alpha_n^l\} \in A^l$,		
$\{A^1, A^2,, A^L\} \subset \mathbb{A}, \ L =$ number of layer	Misse of De	
Expand Threshold: T	Mixed Pr	ecision
For Warm-up Epoch do	Quantiza	tion
² Sample batch data D_w from D_{weight} and network from $\mathbb{A} \sim U(0, 1)$		
Calculate $Loss_{weight}$ on D_w to update network	Proposed	A Motho
weights	FTOPOSEC	
4 End for		
5 For Search Epoch do		
Sample batch data D_w from D_{weight} and network	Network	Meth
from $Softmax(\mathbb{A})$		Full pre
Calculate $Loss_{weight}$ on D_w to update network		w/o NCE
weights		w/NCE(
s Sample batch data D_a from D_{arch} and network from $Softmax(\mathbb{A})$	ResNet18	LSC
Calculate $Loss_{arch}$ on D_a to update A	Residento	QII
For layer do		LQ-N
$j \leftarrow \#A^l$		PAC
5 11		EdMI
If $Softmax(\alpha_j^l; \{\alpha_k^l\}_{k \in j}) \ge T$ do		
Expand search space(α_{j+1}^l)		Full pred w/o NCE
$\alpha_{j+1}^l \leftarrow \alpha_j^l$ # copy search parameter	D N. (50	
5 End if	ResNet50	w/ NCE(
5 End for		LSC
7 End for		LQ-N
s Derive the searched network from \mathbb{A}		PAC
 Randomly initialize the searched network and optimize it on the training set 		EdMI

	Accuracy	HW Compatibility
Uniform Precision Quantization	Low	High
Mixed Precision Quantization	High	Low
Proposed Method	High	High

Network	Method	Top-1 Acc	Top-5 Acc	FLOPs	PARAM
	Full precision 70. w/o NCE(Ours) 64. w/ NCE(Ours) 66. Net18 LSQ 67. QIL 65. LQ-Nets 64.	70.56%	89.88%	1.814G	11.69M
	w/o NCE(Ours)	64.08%	86.47%	1.814G	11.69M
	w/ NCE(Ours)	66.17%	86.75%	1.747G	12.57M
ResNet18	LSQ	67.6%	87.6%		
	QIL	65.7%	-		11.69M
	LQ-Nets	64.9%	85.9%	1.814G	
	PACT	64.4%	85.6%		
	EdMIPS	65.9%	86.5%		
ResNet50	Full precision	76.82%	93.33%	4.089G	25.56M
	w/o NCE(Ours)	72.36%	90.81%	4.089G	25.56M
	w/ NCE(Ours)	74.03%	91.63%	3.932G	17.66M
	LSQ	73.7%	91.5%		
	LQ-Nets	71.5%	90.3%	4.089G	25.56M
	PACT	72.2%	90.5%	4.0890	
	EdMIPS	72.1%	90.6%		

Uniform precision quantization with channel expansion

Performance						
	(intel) XEON Irside	(intel) XEON: Inside		3B+ / ARM Cortex- A53		
	EfficientNetB0	ShuffleNetV2		MBv3 + SSDlite		
Accuracy	84.79% ^{+2.71} ► 87.5%	85.51% <u>+0.26</u> ▶ 85.77%	mAP	15% −−−− ► 15%		
Number of Parameters	4.06M <u>×81%</u> 3.31M	4.03M <u>×52%</u> 2.09M	FLOPs	330M x65% ► 215M		
Inference Time	54ms x84% ► 45ms	112ms x86% ▶ 97ms	FPS	3.3 <u>− ×151%</u> 5		

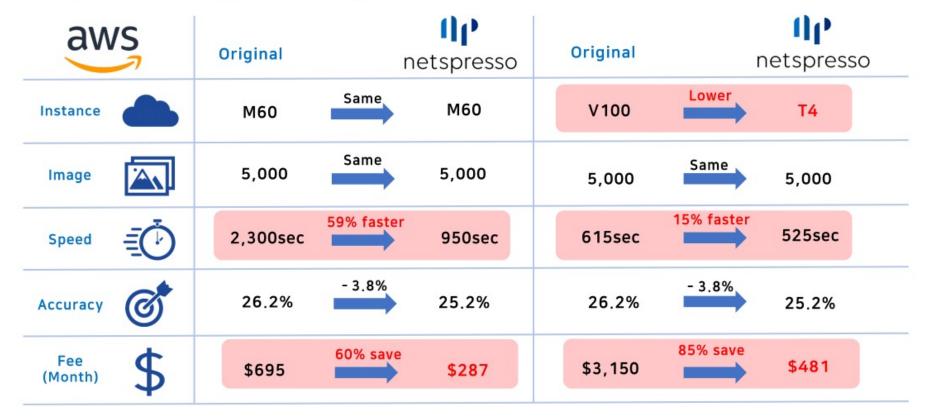
• Classification tasks trained on cifar10 & ran on Intel CPU Xeon E5

• Detection task trained on COCO and ran on Rpi3B+ (1core 1thread)

22

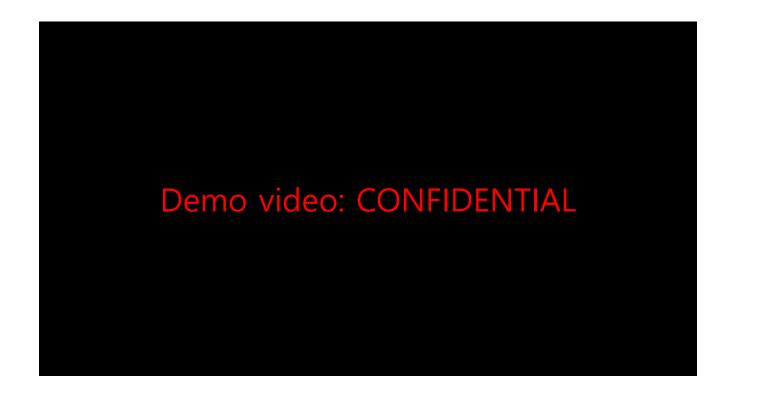
Performance

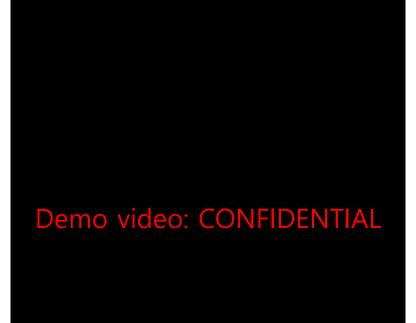
AWS / Detection(Resnet34)



ITS solution with Cameras on Nvidia Jetson Xavier

- Need to reduce traffics during rush hours and real-time traffic controls for emergency vehicles.
- 1st commercialized case in KR for on-device ITS solution. (Pyeongtaek city, Gyeonggi-do)





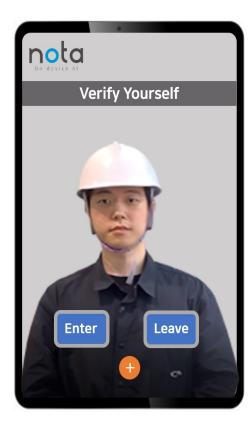
Facial Recognition with Cameras on Nvidia Jetson Nano

Project Overview

- Target to the largest construction site in Asia.
- 1/10 price of existing authentication solution
- · Entry-exit tracking system in restricted areas
- Tracks the duration time of workers in restricted areas
- Manages more than 10,000 workers with an edge device.

Highlights

- **Network-free**: Nota's AI works independently on edge devices without any network connectivity, making it a portable solution.
- No environmental dependencies: Our SW can be operated in diverse conditions. (low light, etc.)
- Detection of accessory presence: It shows the same accuracy with helmet and face mask on (21. 2Q).
- [Optional] Intermediary server: Using an intermediary server, customers can send specific data to their server in real-time and can identify users across multiple edge devices.



Inventory Management Solution with Cameras on Nvidia Jetson Xavier

- Need to reduce resources checking inventory levels in a large market.
- Collaboration with 2nd biggest retailer in KR.

[On-device inventory management (%)]

[On-device inventory management (class)]

nota

THANK YOU FOR YOUR KIND ATTENTION

Nota Incorporated, which has a philosophy of using AI/ML to make the world more convenient, started from Korea Advanced Institute of Science and Technology(KAIST)

www.nota.ai

Nota Incorporated, Room 3104, Bldg.N28, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea **T** +82 2 555 8659 | **E** contact@nota.ai | **W** http://www.nota.ai

ISION ALLIANCE[™] neers to design systems that **perceive + understand**

Empowering Product Creators to Harness Edge AI and Vision

The Edge AI and Vision Alliance (<u>www.edge-ai-vision.com</u>) is a partnership of >100 leading edge AI and vision technology and services suppliers, and solutions providers

Mission: To inspire and empower engineers to design products that perceive and understand.

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at <u>www.edge-ai-vision.com</u>

The Alliance enables edge AI and vision technology providers to grow their businesses through leads, partnerships, and insights

For membership, email us: membership@edge-ai-vision.com

edge ai + vision A L L I A N C E^{**}

Join us at the Embedded Vision Summit May 25-28, 2021—Online

The only industry event focused on practical techniques and technologies for system and application creators

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2021 highlights:

neers to design systems that **perceive + understand**

edge ai + vision ALLIA

- Inspiring keynotes by leading innovators
- High-quality, practical technical, business and product talks
- Exciting demos, tutorials and expert bars of the latest applications and technologies

Visit <u>www.EmbeddedVisionSummit.com</u> to learn more and register (use promo code EARLYBIRD21 by 4/16 to receive your 15%-off Early Bird Discount!)

embedded

summit

IUAL | MAY 25-28

VIS