Enabling Small Form Factor, Anti-Tamper, High-Reliability, Fan-less Artificial Intelligence and Machine Learning

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Smart Embedded Vision Today

Accelerate Smart Embedded Vision at the Edge Supporting 4K Resolutions with Low-Power 12.7 Gbps SERDES

Different application use cases with common requirements

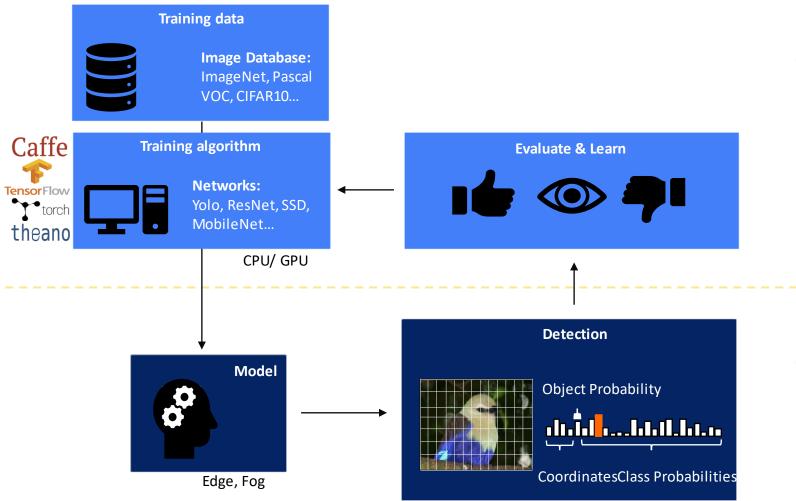
- More pixels
- Small form factor
- More secure

1080p moving towards 4K/8K

Not enough space to fit a heat sink and thermal fan

Ensure safe operation and protection against tamper

Our Objective Today



Low-power, Fan-less, Artificial Intelligence (AI) Camera for the Edge

The Deep Learning Construct

Network Training

- In the data centre or workstation
- Large compute capacity
- No power or space constraints

Inference

- Need low latency
- Power and space constrained
- Requires security and reliability

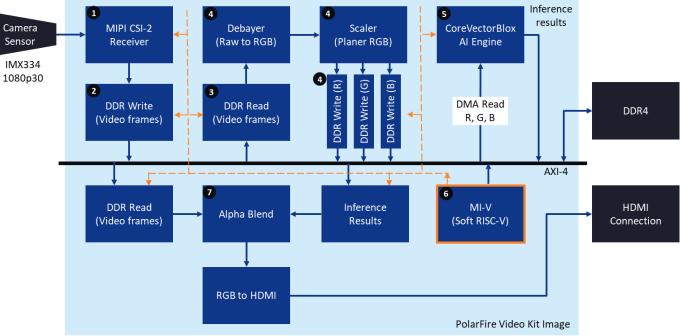
© 2021 Microchip Technology Inc. and its subsidiaries

Design Challenges – Power

Implications to high power consumption

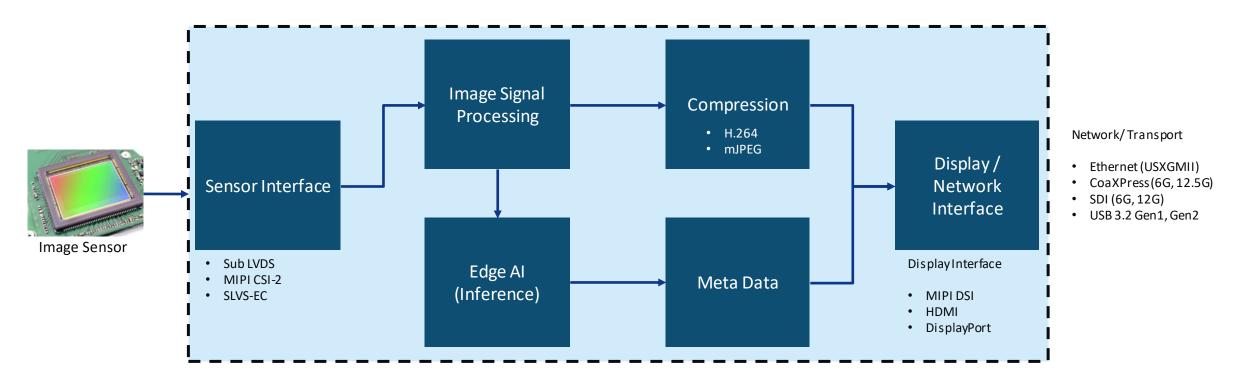
- Increased module size to fit heat sinks and cooling fans
- Increased BOM
- Increased image processing complexity to manage interference in thermal imaging
- Decreased battery life, increased weight due to larger batteries
- Decreased compute envelope to operate within temperature constraints

Heat sinks needed power consumption > 5W


Active cooling requires fans and onboard power electronics and add up to \$10 in bill of materials (BOM)

Portable, battery-powered devices consuming more power will require heavier batteries

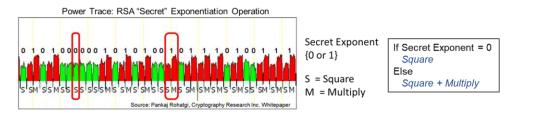
Design Challenge – Advance Driver Assistance Systems (ADAS)



• Implications to safe and reliable operation

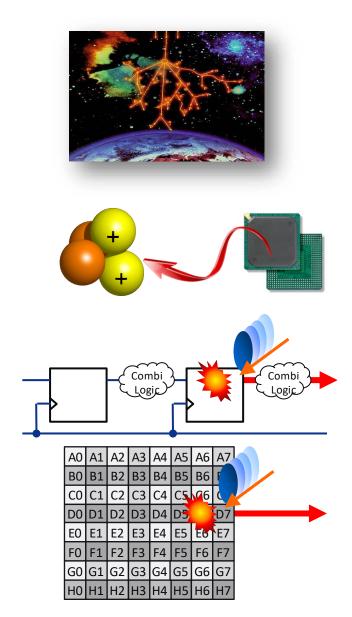
- Can the design withstand, detect, correct or report errors arising out of
 - Processes, random events and transient causes
- Whether it enables safe designs as prescribed to operate in
 - Industrial applications IEC61508
 - Automotive applications ISO26262

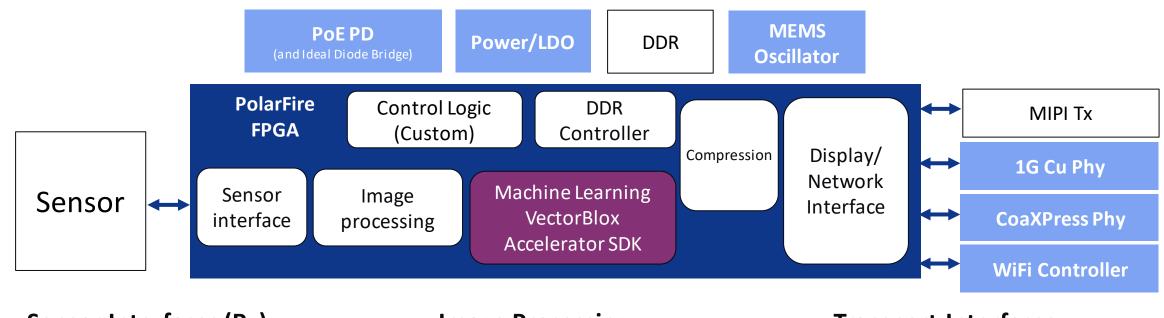
Design Challenge – Evolving Requirements



- Requirements for Embedded Vision
 - Newer AI algorithms, more frameworks
 - Different sensor interfaces, In-System Programming (ISP), compression techniques, network interfaces

Design Challenge – Security


- Cyber Security is the #1 concern for connected devices on the network edge
 - \$400 of DPA hacking equipment can lead to millions of dollars in IP theft
 - Side channel attacks to extract secret keys from cryptographic devices
 - Simple Power Analysis (SPA) involves visual interpretation of power traces
 - Differential Power Analysis (DPA) uses statistical analysis and error correction techniques
- Implications to Security
 - Secure storage of weights for a neural network
 - Ensure system processors execute authenticated code
 - Over the air upgrades for remote installations
 - Ensure new devices cannot be programmed with extracted code
 - Overbuilding or cloning


Design Challenge – Reliability

- Volumes and deployment locations demand reliability
- Single Event Upsets (SEU) due to Soft-Errors
 - Caused due to high-energy particle strikes
 - Prevalent in Space and Avionics levels
 - Also, at the ground level
 - Neutrons generated in Earth's atmosphere
 - Alpha particles generated by radioactive isotopes in package materials
- Implications due to SEU lead to catastrophic system failure
 - SEU on a data bit in flip-flop can introduce logic errors
 - Corrupt bit in data memory may be read multiple times
 - Configuration error in programmable logic changes functionality

Using FPGAs for AI and Embedded Vision

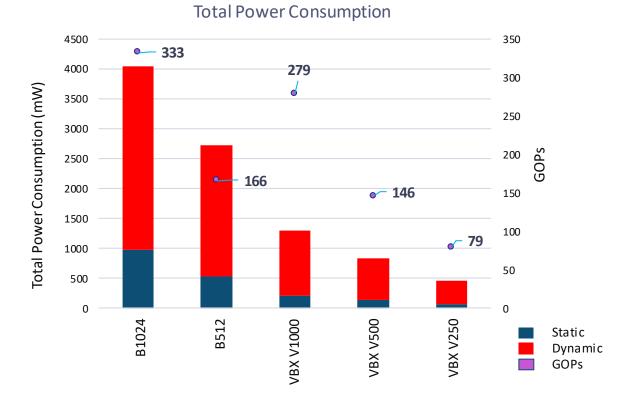
• Sensor Interfaces (Rx)

- MIPI CSI-2
- SLVS-EC v1.2 & v2.0

Compression

- H.264 encode
- mJPEG

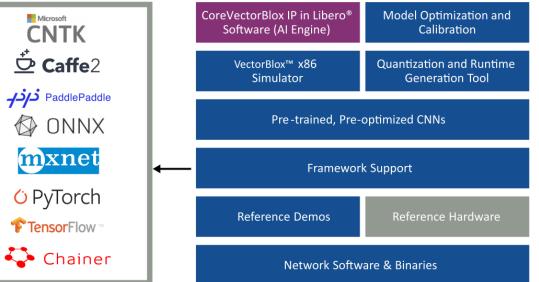
• Image Processing


- Alpha blending
- Bayer interpolation
- Image edge detection
- Image sharpen
- RGB to YCbCr
- YCbCrto RGB
- Histogram
- White balance
- Gamma correction
 - \odot 2021 Microchip Technology Inc. and its subsidiaries

- Transport Interfaces
 - CoaXPress[®] 12G
 - SDI 12G
 - 10G MAC / 10G PHY
 - USXGMII 1, 2.5, 5, 10G
 - HDMI 2.0
 - DisplayPort 1.4a
 - USB 2.0, USB 3.2 Gen1/2
 - 10 GigE Vision

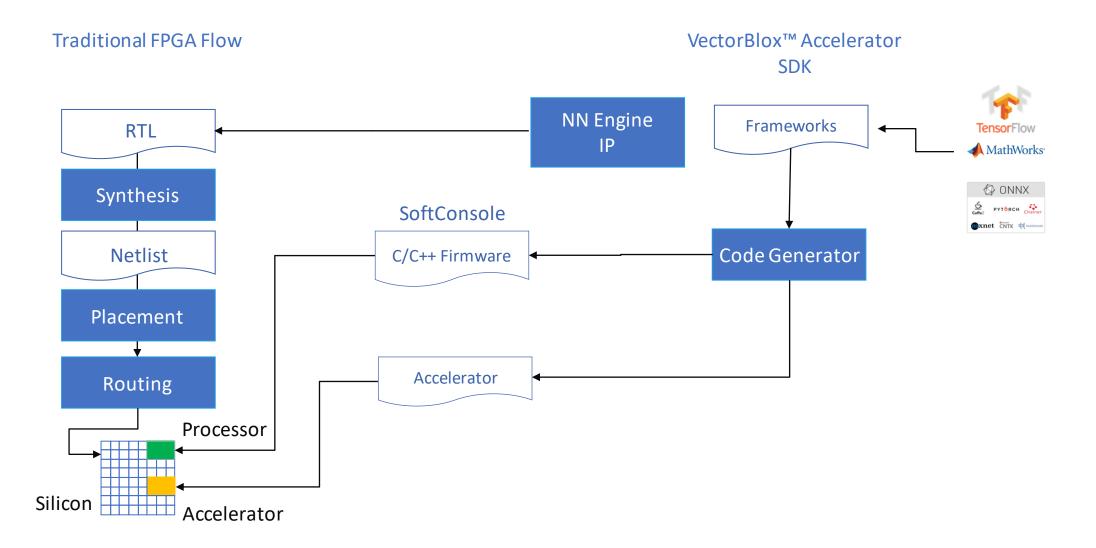
Microchip FPGAs Deliver Fan-less Edge Compute

Core Name	Peak GOPs	Dynamic Power (mW)	Static Power* (mW)	Total Power (mW)	Total Power (mW/GOP)
VectorBlox V1000	279	1094	206	1300	5.1
VectorBlox V500	146	698	127	825	6.4
VectorBlox V250	79	387	65	452	7.1
Comp A B1024	332.8	3072	976	4048	12.2
Comp A B512	166.4	2201	528	2729	16.4


- 2-3x more power efficient inferencing for similar performance output
- Suitable for applications requiring
 - Low power consumption, small enclosures and fan less designs

*Scaled for resource utilization

VectorBlox[™] Software Development Kit (SDK) for Microchip FPGAs


- Enables developers to code in C/C++ and use power-efficient neural networks for inference
 - No prior FPGA design experience required
- Accepts models in TensorFlow, ONNX, etc.
 - Offers the widest framework interoperability
- Includes a bit accurate simulator
 - Validate CNN in software environment
- Pre-trained neural networks demos included
 - Load network models at run time on supported hardware

Libero

Software Abstraction for Neural Networks

Power Estimation Example: Facial Recognition

 A two-step process, 2 Convolutional Neural Networks (CNN) with one Accelerator

• First BlazeFace

- Used in mobile apps
- 3.8GOPs with 6M parameters (estimated)
- Multi outputs
 - Bounding box
 - Eyes, nose, mouth, ears
 - Confidence value

Second SphereFace

- 3.5GOPs with 22M parameters
- Runs on each face detected by BlazeFace
- Input 112x96 image (produced from BlazeFace bounding box)
- Output is a 512 element vector
- 512 vectors are compared to the vector of known faces
 - Person of interest photo is run through SphereFace to build a known face vector

Power Analysis

Design includes

- V250
- Mi-V (AXI4)
- LSRAM
- AXI4 interconnect
- SPI controller
- Image scaler
- DDR4 controller

Settings		
General		
Family	PolarFire	
Device	MPF100TS	
Package	FCSG325	
Range	Extended	
Core Voltage	1.0 V	
Process	Typical	
Speed Grade	-1	
Data State	Preliminary	

Thermal Inputs		
Calculation mode	User Entered Tj	
Junction Temperature Tj (°C)	25.00	
Theta JA		
Effective Θ_{JA} (°C/W)		
Heat Sink		
Air Flow		
Custom ⊖ _{SA} (°C/W)		
Board Thermal Model		
Thermal data is not yet available for the selected combination		

Power Summary

	-		
	Summar	/	
Total Power (W)			1.279
→ Device Stat	→ Device Static (W)		
Core Dynamic (W)			0.938
			0.288
Transceiver (W)			0.000
Junction Temperature Tj(°C)			25.00
Effective Theta JA(°C/W)		N/A	
Thormal Margin	Maximum Ta(°C)	N/A	
Thermal Margin	Maximum Power (W)	N/A	

Power Breakdown				
Resource		%	Power (W)	
Core Static		3%	0.041	
Other Rail Static		1%	0.013	
Core Dynamic	Clock	22%	0.277	
	Logic	37%	0.477	
	Math Block	11%	0.143	
	RAMs	2%	0.029	
	PLL	1%	0.012	
	DLL	0%	0.000	
	Crypto	0%	0.000	
I/O	Switching	13%	0.173	
	DC	9%	0.115	
Transceiver		0%	0.000	

What is Available Today

SDK in GitHub

- Tools
 - Model Optimization
 - Calibration
 - Simulator
- Tutorials
- Documentation
- VectorBlox Website
 - Hardware
 - Example Projects

양 master → 양 1 branch ⓒ 1 tag		Go to file
Joel Vandergriendt update for 1 channe	el inputs	23dfc0d yesterday 🕚 4 commits
ocs docs	Interm Update to V1.0.0	9 days ago
drivers/vectorblox	update for 1 channel inputs	yesterday
example	update for 1 channel inputs	yesterday
🖿 fw	update for 1 channel inputs	yesterday
📄 lib	update for 1 channel inputs	yesterday
python	update for 1 channel inputs	yesterday
📄 tutorials	update for 1 channel inputs	yesterday
🗅 .gitattributes	initial commit	3 months ago
README.md	Interm Update to V1.0.0	9 days ago
install_dependencies.sh	initial commit	3 months ago
🗅 install_venv.sh	Interm Update to V1.0.0	9 days ago
C requirements.txt	initial commit	3 months ago
Setup_vars.sh	initial commit	3 months ago

https://github.com/Microchip-Vectorblox/VectorBlox-SDK http://www.microchip.com/fpga_VectorBlox

Thank you!

©2020 Edge AI and Vision Alliance Confidential

The Alliance enables edge AI and vision technology providers to grow their businesses through leads, partnerships, and insights

Mission: To inspire and empower engineers to design products that perceive and understand.

The Alliance provides low-cost, high-quality technical educational

For membership, email us: membership@edge-ai-vision.com

solutions providers

The Edge AI and Vision Alliance (<u>www.edge-ai-vision.com</u>) is a partnership

of >100 leading edge AI and vision technology and services suppliers, and

Empowering Product Creators to Harness Edge AI and Vision

Register for updates at www.edge-ai-vision.com

resources for product developers

edge ai + vision ALLIANCE"

Join us at the Embedded Vision Summit May 25-28, 2021—Online

The only industry event focused on practical techniques and technologies for system and application creators

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2021 highlights:

+ vision ALLIA

igineers to design systems that **perceive + understand**

- Inspiring keynotes by leading innovators
- High-quality, practical technical, business and product talks
- Exciting **demos**, **tutorials** and **expert bars** of the latest applications and technologies

Visit <u>www.EmbeddedVisionSummit.com</u> to learn more and register (use promo code EARLYBIRD21 by 4/16 to receive your 15%-off Early Bird Discount!)

embedded

Summit

MAY 25-28

VIS