EON Tuner AutoML for real-world embedded devices

Hi, I'm Jan!

Cofounder and CTO at **Edge Impulse** Building connected cameras since 2014 Ex-Firefox OS, ex-IoT at Arm

SO. MANY. DEVICES!

I was promised insight in the world, but I get...

-10°C

Lots of visual information in the world

Does this bottle have the right label?

How many people are in line?

Do I see an elephant?

But requiring a human is not great...

Humans like to sleep

Humans cost money (*)

Being so close to an elephant that you can see it might be dangerous (e.g. poachers)

Do I see an elephant?

How many people are in line?

Sensors need to be more like us

Infinite sounds, images, motions all around us

We know there's a correlation

We can probably collect the data, but mostly throw it away: devices are cost, bandwidth or power constraint

Machine learning helps you find the rules

Normal programming

Machine learning

Not just vision

Biosignal analysis

Detecting abnormal vibration

------UN Google google.com/datacenters

Lots of development!

Running on device is key

- Constrained devices, but also constrained usecases
- Quantization, knowledge distillation, neural network compilers, hardware acceleration (even on MCU)
- Design within the constraints of the device

You can actually do a lot!

Where we are today

Anomaly Detection Sensor Classification

20 kB

Cortex-MO+

12

Where we'll be tomorrow

Anomaly Detection Sensor, audio, voice Classification

20 kB

Cortex-MO+

Signal processing + ML = 💜

208.00 416.00 624.00 832.00 1040.001248.001456.001664.001872.00 0.00

Apply low-pass filter...

= much easier job for the ML algo

Leveraging signal processing

- On-device intelligence is not new
- Neural networks are inefficient, if you can preprocess? Do so!
- Significantly reduce input features, leading to smaller networks.
- Cleans up input

ML Sensor pipeline is often combination

ML Sensor pipeline is often combination

Wide range of parameters

Window length, window step, downsample?

Wide range of parameters

+ endless configuration options

Constrained targets - what's worth it?

Edge Impulse

The place to build embedded Machine Learning models (vision & non-vision)

From engineers (not data scientists!) for engineers

Every step of the way, from data collection to deployment

Already >38,000 real ML projects created!

Free for developers: edgeimpulse.com

Dashboard Devices Data acquisition 🚸 – Impulse design Create impulsi Spectrogram NN Classifier 🔀 – Retra in model * Live classification Model testing

EDGE IMPULSE

Versioning

🍈 🛛 Deploymeni

GETTING STARTED

27 Documentation

Eorums

EdgeImpulse Inc. / Keyword spotting

npulse project. From here you acquire new training data, design impulses and train models

Project info Keys Export

reati	ng your first impulse (67% complete)	Summ	агу
	Acquire data Every Machine Learning project starts with data. You can capture data from	0	DEVICES CONNECTED
	a development briand or your phone, or import data you a ready collected.		
	✓ LET'S COLLECT SOME DATA		DATA COLLECTED
	Design an Impulse		
	Teach the model to interpret previously unseen data, based on historical		
	data. Use this to categorize new data, or to find anomalies in sensor readings.	Collab	orators
	$\hat{\mathcal{R}}$ - BETTING STARTED: CONTINUOUS MOTION RECOGNITION		Arjan Kamphuis
	BETTING STARTED: RECOGNIZE SOUNDS FROM AUDIO		
	GETTING STARTED: ADDING SIGHT TO YOUR SENSORS	8	Daniel concretences store
	Deploy	6	janjongboom ases weuts
	Package the complete impulse up, from signal processing code to trained		
	money, and deploy it on your device. This ensures that the impulse hurs with ow latency and without requiring a network connection.		Zach She by some nearest
		Projec	t info
n	load block output	Project I	D 3
		Project l	D 3

No downloads available yet

Administrative you

Introducing the EON Tuner!

															8	mat
													\$	Config) [≡	Logs
delv	variar	nts eva	luated	/ 50 v	ariant	ts tota	al)									
M: 1	024k	B 📰	••••	••••	••••		•••									
/NTI/	A Clo	ine 1	33 :		96%	5 10)x10	SYNTI	A Clo	one 21	f1	T	ilters			
C		C)		PER	FORM	ANCE	C		Ċ)	Stat	us Pending Running			
RAM	1	RO	м			Latenc	v	RAN	1	RO	N		Complete	od		
					ACC	URACY	(Failed	eu		
0	0	0	0		coo -	95	5	a	0	D	0					
8	0	0	0		dis –	2	92	4	2	0	0	te v	/iew			
100	0	0	0		eat –	0		98	0	0	0					
0	96	0	0		soc –		0		96	D	0	Data	a set			
D	0	100	0		vac –	D	0	۵	0	100	0		Validatio Train	n		

EON Tuner

Find best model for sensor data over mix of input blocks, DSP blocks and ML blocks

Specify device constraints

Extensible with your own DSP and ML blocks

Biggest win: "we found DSP configuration that works so well, we no longer need ML"

EON TUNER (DCASE2018) EON Tuner **\$** Dashboard Devices Finding the most optimal architecture for your model (17 model variants e 😑 🛛 Data acquisition 5 cortex-m7-216mhz 1000 ms RAM: 128kB • ROM: 1024kB Impulse design Create impuls 10x10 | SYNTIA | Clone | a65 10x10 | SYNTIA | Clone | 133 97% 96% 0x10 | SYNTIA | Clone | 2f1 **T** Filters MFCC Status Pending NN Classifie 🔽 Running Complet 🔏 🛛 Retrain mode ✓ Failed The classification 🙎 🛛 Model testin TE View Versioning Data set Deploymer Validatio 🧭 EON Tune Train Test GETTING STARTED Precision o int8 👩 Documentation) float32 Forums Compiler EON™) TF Lite 1≣ Sort Accuracy) Last upd

	٩	mat	:hijs	
Config	[1]	Logs		
ed				
n				
ated				Ø

Still an engineering too

Find the optimal architecture for your machine	Dataset category		
learning model	Speech (Keywords)		
concurrently to help you find the best performing architecture for your app ication. The search process can take up to 24 hours to complete. We will notify you by e-mail on completion of the search process. While the search is running you can view the progress on this page at any time.	 Speech (Keywords) Yes/no Hello world Speech (Continuous) Emotions Speaker gender Audio (Events) 		
	Breaking glass Gunshot Audio (Continuous) Household activities		

Z

Z

Questions it can answer for vision

What transfer learning block to use?

Grayscale or RGB? Resolution?

Preprocessing of data (e.g. edge finding using CV) yes or no?

Within the constraints of your device

Getting started

https://docs.edgeimpulse.com/docs

Very wide range of dev boards, from Cortex-M4F to Jetson Nano Deploy to any device that has a C++ compiler Or use your phone!

www.edgeimpulse.com

Imagine in the second s

The future of data-driven engineering starts now.

SEPT 29 - OCT 01

The ML hype is real

ML + sensors = perfect fit

Let's make those billions of devices see the world!

edgeimpulse.com

Recap

Full docs: https://docs.edgeimpulse.com

Performance metrics: https://docs.edgeimpulse.com/docs/inference-performance-metrics

Adding sight to your sensors: https://docs.edgeimpulse.com/docs/image-classification

Object detection:

https://docs.edgeimpulse.com/docs/object-detection

More questions: <u>forum.edgeimpulse.com</u> / jan@edgeimpulse.com

Empowering Product Creators to Harness Edge Al and Vision

The Edge AI and Vision Alliance (www.edge-ai-vision.com) is a partnership of 100+ leading edge AI and vision technology and services suppliers, and solutions providers

Mission: To inspire and empower engineers to design products that perceive and understand.

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at <u>www.edge-ai-vision.com</u>

The Alliance enables edge AI and vision technology providers to grow their businesses through leads, partnerships, and insights

For membership, email us: membership@edge-ai-vision.com

edge ai + vision L L I A N C E

©2020 Edge AI and Vision Alliance Confidential

Join us at the Embedded Vision Summit May 16-19, 2022—Santa Clara, California

The only industry event focused on practical techniques and technologies for system and application creators

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2022 highlights:

- **Inspiring keynotes** by leading innovators
- High-quality, practical technical, business and product talks

Visit www.EmbeddedVisionSummit.com to learn more

2022 embedded VIS summit MAY 16-19

Exciting demos, tutorials and expert bars of the latest applications and recursory

©2020 Edge AI and Vision Alliance Confidential

