

SEQUITUR LABS

Securing Smart Devices:

Protecting AI at the Edge

SEQUITUR LABS | Securing the Connected World

Chip-to-Cloud Security Solutions for the Network Edge

Software, Cloud Services and Ecosystem

Today's Webinar

- Edge Device Security & AI at the Edge -Overview
- Device Security Basics: Secure Boot, Firmware Updates, Failure Recovery, and Cloud Integration
- Methods for Protecting AI at the Edge
- Al at the Edge: Demo
- Resources
- 0 Q&A

Problem: IoT Devices are at HIGH SECURITY RISK

- **75B** connected devices by 2025
- 48% of firms experienced an IoT security breach at least once
- Cost of an IoT Breach can exceed **10%** of revenues
- AI at the Edge Increases IP exposure
 - 75% of all data will be generated at the Edge

Sources: Researchgate, Poneman Institute, Altman Vilandrie & Company, Gartner

Why Isn't the IoT Secure?

- Specialized skills
- Steep learning curve
- Fragmented silicon and software options
- Time-to-market pressure

Edge Device Security - from Design to End-of-Life

- Implement a solution comprising a strong device security framework ensuring end-to-end, chip-to-cloud trust.
- This solution must:
 - Simplify security deployment
 - Work across a fragmented silicon landscape
 - Enable secure manageability
 - Provide a trust anchor for cloud services

Edge Device Security End-to-End

- Device security using ARM TrustZone®
- Secure Cloud Integration
- Cloud Services for management and updates
- Consistent implementation across silicon platforms

Device Monitoring Secure Updates Threat Detection Remediation

Understanding ARM TrustZone®

Pre-packaged Security

8

Step 1: ROM Boot Loader

- Boot is initiated by Read-Only Memory (ROM)
 - Enabled by hardware (Fuses and Pins)

Step 2: Secondary Program Loader (SPL)

- ROM Loads the first software Secondary Program Loader (SPL)
 - Loaded from Flash Memory (NVM) to Random Access Memory (RAM)
 - Signature is verified using a cryptographic key
 - ROM verifies key by comparing it to value set in fuses
- After verification, software is loaded and process of decrypting and locating OS and Application software begins

Step 3: Memory Isolation, Secure Environment (TEE) Establishment

- Secondary Program Loader Separates RAM into two partitions
 - Secure Environment (secure Enclave)
 - Rich-Environment (Non-Secure)
- Secure OS software is verified, decrypted and loaded

Step 3: Memory Isolation, Secure Environment (TEE) Establishment

- Secure OS called the Trusted Execution Environment (TEE), is set up
 - EmSPARK[™] CoreTEE[™] Secure OS supports this
- CoreTEE[™] loads Keys and Certificates for use by Trusted Applications

Step 4: Establish Rich (Non-Secure) Environment

- CoreTEE[™] passes control to Secondary Program Loader (SPL)
- SPL sets up the Rich (Non-Secure) environment OS (ex. Linux)

Step 5: Load Device Applications

- Rich OS (ex. Linux) sets up device applications
- Applications are loaded and decrypted

Secure Boot - Summary

- Provides authentication and protection for all applications and functions in the boot process
- Isolates critical security resources
 - Memory addresses reserved for rich OS (Linux) and secure OS (Trusted Execution Environment)
 - Shared memory for coordination between OS
- Verifies fidelity of firmware
- Encrypts/Decrypts boot payloads
- Creates Unique Device ID, Tied to Hardware Root of Trust (RoT)

Secure Over-the-Air (OTA) Firmware Updates

- Risk of compromise is HIGH during the update process!
 - Incoming payloads need to be authenticated
- Critical functions
 - Key and certificate-based payload authentication
 - Coordination with Linux encrypting file system
 - Location for storing update payloads
 - Customizable enforcement of rollback prevention
 - Generation, signing, and encrypting of a new firmware image

Secure Over-the-Air Updates - Example

Device sends periodic/event-driven status messages To Cloud Server

Cloud Server provides update details (ex. Location)

Device retieves update and authenticates firmware

Device performs update, sends new status to Cloud

Chip-to-Cloud Integration

- Mutual authentication between device and cloud is required
 - Tied to hardware root-of-trust (RoT), verifying identity
 - Credentials (cert/key) protected storing and verifying in secure domain
- All device data has strong audit trail to source
- Device Tampers and faults can be collected for analysis

Protecting AI Models at the Edge

- Machine Learning and AI at the edge present new challenges for security
- Applying the principles of device security at the edge becomes critical
- Key principles for protecting AI Models:
 - Ensure the model is authentic
 - Hide the model from attackers

Protecting IP: Encrypting Rich OS Applications using Trusted Applications

- Applications encrypted and locked to device in storage
- Special CoreLockr Loader to handle protected applications
- Trusted Application verifies permissions and decrypts application
- Trusted Application loads Linux App direct to RAM and runs

Opaque Keys and Objects How do I protect content on the device?

- EmSPARK[™] provides two mechanisms to send confidential information to a device
 - Opaque Keys Device specific encrypted and signed key to be loaded to key store in TEE
 - Opaque Objects Device Specific encrypted and signed Data to be decrypted on device
- Protecting an application or model
 - Deliver as an Opaque Object
 - Decrypt with Opaque Object to volatile memory
 - Use application or model
 - Clear memory

Protecting IP: Protecting Rich OS Applications that Rely on Dedicated Hardware

- Applications encrypted and locked to device in storage
- Special CoreLockr Loader to handle protected applications
- Trusted Application verifies permissions and decrypts application
- Trusted Application loads to Isolated VM to run securely

Virtualization (SECURING THE AI Hardware)

Challenge – Sometimes moving the software and hardware to the secure enclave is too much. How do you protect assets without moving to the secure enclave?

Virtualization is the answer!

- Create a virtualized set of guest OS instances to separate domains in the non-trusted side
 - One isolated Linux to run the primary application and user code, but restricted hardware access.
 - One Linux to access the protect hardware and assets
- The isolated Linux is where the primary application, user data, and other less critical applications run

Today's example

- Appliance that applies AI models for camera feeds
 - Different models can be loaded (ex, store demographics, intersection traffic, etc)
- Secure communication between the device and the cloud
- AI Models are delivered to the device

Video Feed

- Office traffic
- Key areas of inference:
 - Entry/Exit
 - Faces
 - People
 - Bags

Al model applied

Why Al Models are at Risk: Typical Architecture

Shared Linux OS, Apps, and Access! Anyone with access can corrupt the AI Model

Accessing and Corrupting the Model

The values in the config file are overridden by values set through GObject # properties.

[property] enable=1 #Width height used **for** configuration to which below configs are configured config-width=1920 config-height=1080 #osd-mode 0: Dont display any lines, rois and text 1: Display only lines, rois and static text i.e. labels 2: Display all info from 1 plus information about counts # osd-mode=2 #Set OSD font size that has to be displayed display-font-size=12 [line-crossing-stream-0]

enable=1 #Label:direction:lc # Direction: 2 coordinates of direction followed by 2 coordinates of virtual line # Label ; direction; direction; line; line line-crossing-Entry=750;670;800;750;300;850;1350;650; line-crossing-Exit=900:1000:850:900:300:1000:1550:760:

class-id: 0=> people 1=> bag 2=> face class-id=0

#extended when 0- only counts crossing on the configured Line 1- assumes extended Line crossing counts all the crossing # extended=0

The values in the config file are overridden by values set through GObject # properties.

```
[property]
enable=1
#Width height used for configuration to which below configs are configured
config-width=1920
config-height=1080
#osd-mode 0: Dont display any lines, rois and text
          1: Display only lines, rois and static text i.e. labels
#
          2: Display all info from 1 plus information about counts
osd-mode=2
#Set OSD font size that has to be displayed
display-font-size=12
[line-crossing-stream-0]
enable=1
#Label:direction:lc
# Direction: 2 coordinates of direction followed by 2 coordinates of virtual
line
# Label ; direction;direction; line;line
line-crossing-Entry=750:670:800:750:300:850:1350:650:
line-crossing-Exit=900;1000;850;900;300;1000;1550;760;
# class-id: 0=> people 1=> bag 2=> face
class-id=5
#extended when 0- only counts crossing on the configured Line
#
               1- assumes extended Line crossing counts all the crossing
extended=0
```

#LC modes supported:

#

.

Change to script renders model useless!

Al Corrupted!

Intellectual Property (Models and Data) are Exposed!

 $\mathbf{X} \wedge \mathbf{V}$

root@linuxbox:~

root@linuxbox:~\$ config_infer_primary_peoplenet config_nvdsanalytics config_nvdsanalytics.txt.HACKED config_nvdsanalytics.txt.NORMAL deepstream_app_source1_peoplenet dtest5_msgconv_sample_config labels peoplenet_video resnet34_peoplenet_pruned.etlt resnet34_peoplenet_pruned.etlt_b1_gpu run-demo tracker_config.yml

Protecting the Al Model: Virtualization

Cannot be seen or accessed by the Client Cores

Sequitur Security Platform: The Next Logical Step

Sustain Secure Management

EmPOWER™ Cloud Services *Trust as a Service*

- 40% reduction in security deployment time
- Fraction of in-house development risk
- Consistent implementation across silicon platforms

- Secure updates, management
- Threat detection and remediation
- Authenticated device events and metrics

Sequitur Labs Security Platform

CoreTEE[™]

- Secure OS enabling access to TrustZone® secured resources
- CoreLockr[™]
 - APIs
 - Trusted applications
 - Code examples
- EmSPARK™ Security Suite

 \odot

- Integration Tools
 - Firmware packaging tool
 - Linux patches
- Software Development Kit
 - Software for Custom Trusted Application Development
- Trusted Provisioning Tools

EmPOWER™ Device Managment

- Available NOW
- Contact us at <u>info@sequiturlabs.com</u> for a demo or free trial

Platforms Supported:

Microchip SAMA52 Microchip SAMA5D2-SOM NVIDIA Jetson AGX Xavier NVIDIA Jetson TX2 / NX NXP i.MX6/7/8 NXP Layerscape ST Micro STM32MP1

SEQUITUR LABS 33

©2020 Edge AI and Vision Alliance Confidential

34

The Alliance enables edge AI and vision technology providers to grow their businesses through leads, partnerships, and insights

Register for updates at www.edge-ai-vision.com

For membership, email us: membership@edge-ai-vision.com

perceive and understand. The Alliance provides low-cost, high-quality technical educational

Mission: To inspire and empower engineers to design products that

The Edge AI and Vision Alliance (<u>www.edge-ai-vision.com</u>) is a partnership of 100+ leading edge AI and vision technology and services suppliers, and solutions providers

Empowering Product Creators to Harness Edge AI and Vision

resources for product developers

edge ai + vision A L L I A N C E"

Join us at the Embedded Vision Summit May 16-19, 2022—Santa Clara, California

The only industry event focused on practical techniques and technologies for system and application creators

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2022 highlights:

- Inspiring keynotes by leading innovators
- High-quality, practical technical, business and product talks
- Exciting demos, tutorials and expert bars of the latest applications and technologies

Visit www.EmbeddedVisionSummit.com to learn more

2022 embedded VISI n Summt MAY 16-19

SEQUITUR LABS Thank You

https://www.sequiturlabs.com/