Introducing OpenVINO[™] integration with TensorFlow

OpenVINO[™] integration with TensorFlow

01 Al use cases

02 Training vs Inference

03 Challenges in Deep Learning

04 OpenVINO[™] toolkit

05 OpenVINO[™] integration with TensorFlow

06 Workflow of OpenVINO[™] integration with TensorFlow

07 Platform, Docker & OS Support

08 Architecture of OpenVINO[™] integration with TensorFlow

09 Demo on OpenVINO[™] integration with TensorFlow

10 Resources

Al Use Cases across various domains

Visual Inspection

Automated inspection of Personal Protective Equipment (PPE), such as Mask Detection or Helmet Detection

Cancer Analysis

Detect slight differences between cancerous and non-cancerous images and diagnose data from magnetic resonance imaging (MRI) scans

Al Use Cases across various domains

Animal Monitoring

Monitor count, behavior and health of specific livestock such as pigs, cattle, or poultry

Inventory Monitoring

Monitoring store shelves and warehouses to prevent stock out situations

Training vs Inference

Challenges in Deep Learning

Development and deployment challenges in deep learning

Unique Inference Needs

Gap in performance and accuracy between trained and deployed models

Integration Challenges

No streamlined way for end-to-end development workflow

No One Size Fits All

Diverse requirements for myriad use cases require unique approaches

Low performing, lower accuracy models deployed

Slow time-to-solution and time-to-market

Inability to meet use-case specific requirements

Intel[®] Distribution of OpenVINO[™] toolkit

Fast, accurate real-world results with high-performance, deep learning inference

Convert and optimize models, deploy across a mix Intel hardware and environments, on-premise and ondevice, in the browser or in the cloud

Learning Curves of Adapting to the Typical Workflow

Offline model conversion.

TF developers who don't want to learn new API.

Limited model coverage.

OpenVINO[™] integration with TensorFlow

Why OpenVINO[™] integration with TensorFlow

Use OpenVINO[™] Native APIs (Model Optimizer/IR Format)

For amazing compatibility: Use OpenVINO[™] integration with TensorFlow

- TensorFlow developers using native TensorFlow APIs to try out OpenVINO[™] Toolkit
- Providing acceleration for all TF models (e.g. TFHub)
- Easy onboard TF developers pip install + 2 lines of code in TF applications
- Willingness to accommodate slightly less acceleration/HW control vs native OpenVINO[™] APIs

Platform & Docker & OS support in OpenVINO[™] integration with TensorFlow

Platforms Support

- Intel[®] CPUs
- Intel[®] integrated GPUs
- Intel[®] Movidius[™] Vision Processing Units - referred to as VPU
- Intel[®] Vision Accelerator Design with 8 Intel Movidius[™] MyriadX VPUs referred to as VAD-M or HDDL

Docker Support

- **Dockerfiles** for Ubuntu 18.04 and Ubuntu 20.04 OS are available.
- **Dockerfiles with TensorFlow Serving** support for the corresponding OS's are available.
- Prebuilt images can be found on <u>Docker</u> <u>Hub</u>
- TensorFlow Serving docker images released for OpenVINO[™] integration with TensorFlow can be used to run all the workflows supported by standalone TensorFlow Serving Docker images

Reference Link

OS Support

- Ubuntu 18.04, 20.04
- MacOS 11.2.3
- Windows 10 64 bit

Other Prerequisites

Python: 3.7, 3.8, 3.9

Interactive Installation Table

Check out the table for a menu of installation options.

Supported Models

TensorFlow Serving Support- GitHub Walkthrough

Architecture of OpenVINO[™] integration with TensorFlow

Architecture of OpenVINO[™] integration with TensorFlow

Architecture of OpenVINO[™] integration with **TensorFlow TensorFlow subgraph OpenVINO[™] IR graph**

Retva

Const

Transpose

custom (4)

1×1×4×4

 $1 \times 4 \times 4 \times 1$

16

custom (1×1×1×1)

1×1×1×1

1×1×1×1

Architecture of OpenVINO[™] integration with TensorFlow

Basic back end supports Intel[®] CPU, iGPU, MYRIAD.

VAD-M back end is used for Intel[®] Vision Accelerator Design with eight VPUs (known as VAD-M or HDDL).

DEMO- Google Colab

Intel[®] DevCloud: Edge Workloads

What's New with OpenVINO™ integration with TensorFlow <u>v2.1.0</u>

This release provides functional improvements and enhanced backend support from the previous preview release.

- Performance Optimizations of existing supported models
- TensorFlow version upgraded to v2.9.1.
- Prebuilt images are updated and can be found on Docker Hub and Azure Marketplace
- OpenVINO[™] integration with TensorFlow source code is backward compatible. This means you will be able to build its source code with the past MINOR versions of TensorFlow 2.x.
- Enhanced GitHub documentation

OpenVINO[™] integration with TensorFlow

<u>GitHub</u> | <u>PIP</u> | <u>DockerHub</u> | <u>Azure Marketplace</u> | <u>Introductory Blog</u> | <u>FAQ</u> | <u>Solution Brief</u> | <u>Comic Strip</u> | <u>Developer Guide</u>

Interactive web page to download and install the packages for use on your local edge devices: <u>OS/Python/Platform installation matrix</u>

Quickly get started with example demo applications and reference implementations

GitHub **Examples**: <u>classification</u>, <u>object detection</u>

Illustration to run samples on Intel DevCloud: classification, object detection

Illustration to run samples on Google Colab : classification, object detection

Instructions on Docker support & TensorFlow Serving support

Instructions to accelerate TensorFlow models on cloud platforms: AWS, Azure

Intel <u>course</u> on OpenVINOTM integration with TensorFlow

Email openvino-tensorflow@intel.com for any other questions

Additional Resources

To learn more:

- <u>OpenVINOTM integration with TensorFlow</u>
- <u>OpenVINO[™] Execution Provider for ONNX Runtime</u>
- <u>OpenVINO[™] integration with TorchORT</u>

Empowering Product Creators to Harness Edge AI and Vision

The Edge AI and Vision Alliance (<u>www.edge-ai-vision.com</u>) is a partnership of 100+ leading edge AI and vision technology and services suppliers, and solutions providers

Mission: To inspire and empower engineers to design products that perceive and understand.

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at <u>www.edge-ai-vision.com</u>

The Alliance enables edge AI and vision technology providers to grow their businesses through leads, partnerships, and insights

For membership, email us: membership@edge-ai-vision.com

edge ai + vision A L L I A N C E^{**} Join us at the Embedded Vision Summit May 22-25, 2023—Santa Clara, California

The only industry event focused on practical techniques and technologies for system and application creators

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2023 highlights:

gineers to design systems that perceive + understand

- Inspiring keynotes by leading innovators
- High-quality, practical **technical, business and product talks**
- Exciting demos, tutorials and expert bars of the latest applications and technologies

Visit <u>www.EmbeddedVisionSummit.com</u> to learn more

embedded

VISION

#