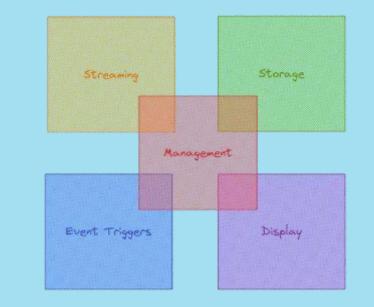


Advanced Analytics for VMS Platforms

Avi Baum & Mark Grobman 7 February 2023


Agenda

- VMS key components
- Analytics in VMSs
- Deployment topologies
- Benefit of analytics (by example)
- The rise of transformers

HAILO 2 © Hailo 2023

VMS in a nutshell

- Video Management System (VMS) as a hypernym for all functional components involved in multiple cameras systems
- In this talk context, VMS encapsulates all the key components of this system
- Mostly deployed in the context of security systems
- Applicable in any massive deployment of video sources

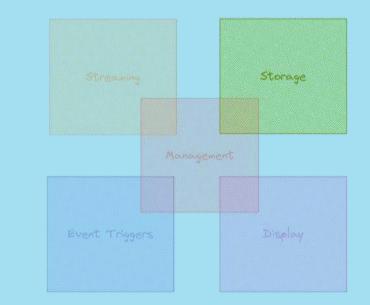
VMS Key Components: Streaming

- Determines what content is being transferred and when
- Key factors
 - \rightarrow No. of streams / channels
 - → Per channel frame rate
 - → Encoding capacity
 - → Latency
 - → Bandwidth
- Typical configurations
 - → Streaming all

- → Store & forward
- → Stream upon event

4 © Hailo 2023

Streaming Storage Management Event Triggers Display

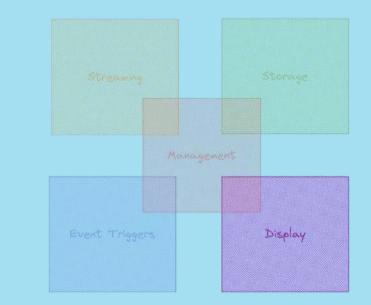

Actual Bandwidth ~ $N \cdot \sigma(W \cdot H \cdot FPS) \leq Network BW$

 $N \cdot W \cdot H \cdot FPS \leq Encoder BW$

VMS Key Components: Storage

- Determines what content is being stored and when
- Key factors
 - \rightarrow No. of streams / channels
 - → Per channel frame rate
 - → Storage duration
 - → Storage space
 - → Read & Write speed
 - \rightarrow Efficient indexing & search
- Typical configurations
 - → Local storage
 - \rightarrow Central storage

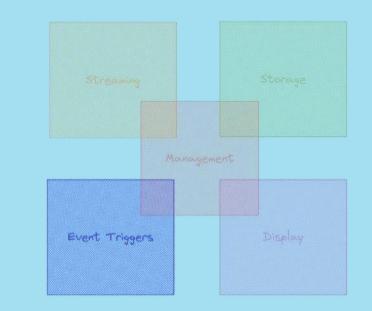
HAILO 5 | © Hailo 2023

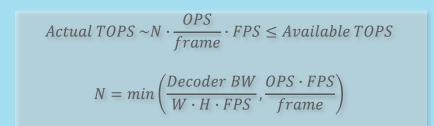

Actual Bandwidth ~ $N \cdot \sigma(W \cdot H \cdot FPS) \leq Write Speed$

 $\sigma(W \cdot H \cdot FPS)$ Duration $\sim N \cdot$ Storage space

VMS Key Components: Display

- Determines what content is being displayed and when
- Key factors
 - \rightarrow Number of displays
 - → Minimal stream resolution
 - \rightarrow Display resolution
 - → Decoding speed
 - → Operator attention (which streams are selected)
- Typical configurations
 - → Co-located with management entity
 - \rightarrow Co-located with storage entity
 - → Separate




 $\frac{D \cdot W \cdot H}{Stream_W \cdot Stream_H} \cdot Refresh_Rate \le Decoding speed$

VMS Key Components: Events

- Triggers events from selected video sources
- Key factors
 - \rightarrow No. of streams/channels
 - → Per channel frame rate
 - → Decoding capacity
 - \rightarrow Event rate
 - → Latency
 - → Accuracy (low miss-rate ; low false alarms)
- Typical configurations
 - → Camera-attached
 - → Gateway-bound

H/ILO 7 © Hailo 2023

Where to apply analytics?

• In what stages of the VMS processing pipeline?

 \rightarrow

→

 \rightarrow

• Do they serve the same purpose?

.. All .. No

- Motivation
 - \rightarrow Camera-attached analytics \rightarrow
 - \rightarrow Gateway bound analytics \rightarrow
 - \rightarrow Storage entity analytics
 - \rightarrow Display entity analytics
 - → Event triggering

- Lower per-channel bandwidth
- Improve latency by offloading central processing
- Limit storage bandwidth and capacity
- Display relevant activity
- Lower / better balance load on other entities

Why is advanced analytics needed?

- Why do we need to make a distinction between "basic" and "advanced"?
- What is **advanced** analytics?
- Several options to define
 - → More .. Functionality
 - \rightarrow Better.. Performance
 - → Higher.. Density

running more analytic functions in parallel higher true positives with lower false alarms and miss rates more channel per system

Analytics was used to be a bottleneck, this is no longer the case

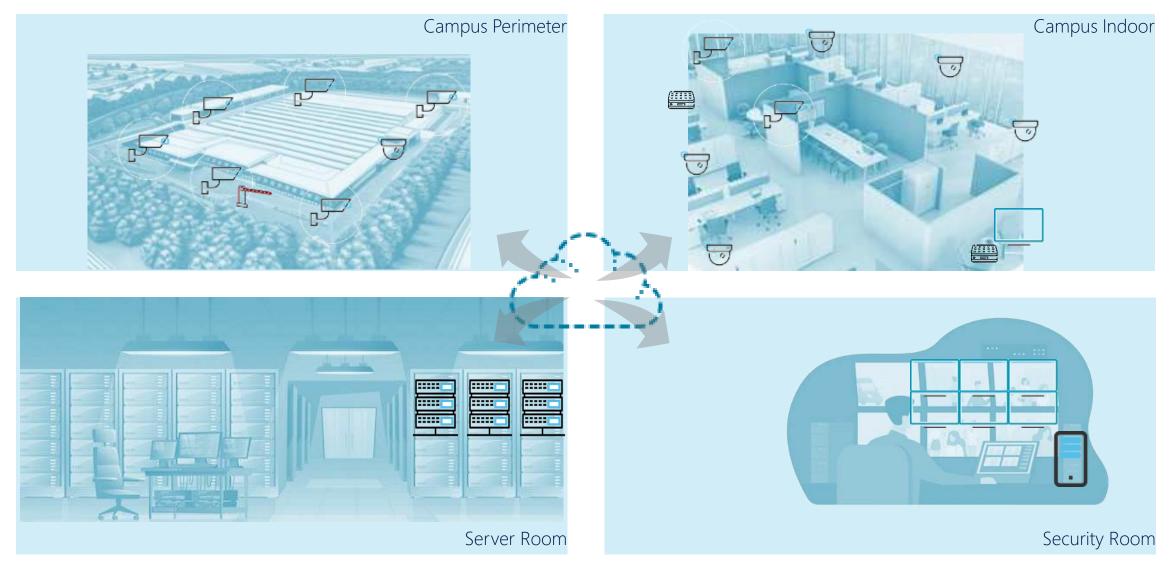
What does better analytics enable? ALPR Example

Advanced analytics requires more processing capacity to provide better performance

Standardization of quality

- Domain-specific standards for image quality requirements
 - \rightarrow IEC EN62676 (Image Quality for Video Surveillance Systems)
- Establishes a baseline for required analytics
 - \rightarrow Representing nominal conditions only (not 'in the wild')
 - → Lacking the insights of common AI perception test paradigms (e.g. a well curated dataset)
- Advanced analytics can be used to
 - → Meet standard defined functionality in extreme conditions
 - → Meet standard functionality with simpler endpoint
 - → Improve over standard baseline at same conditions

Pixel density on target for different operator tasks


Advanced analytics to **extend** operational envelope

Analytics in Practice

Typical System Configurations

Multiple Topologies

Analytics in context

Few typical configurations for introducing analytics to a VMS system

1. Standalone analytics box / edge box

2. Storage-attached analytics

3. Server-attached analytics

HAILO 14 © Hailo 2023

Video Analytics Box

- Purpose built box
- Receives encoded streams
- Handles per-stream analytics to lower load on next stages
- Price pressured
- No local display
- No local storage
- Main KPIs
 - → Decoding capacity @ MPPS
 - \rightarrow TOPS / frame
 - → Price: \$ / channel

Measured data on RSC-101:							
	CPU	Intel Celeron J6413					
	Al	Hailo-8					
Performance							
	Decoding (2MP)	570 fps					
	TOPS / channel	~ 0.75					
	\rightarrow Total channels	16					
	Price	25 \$/channel					

Storage Server

- High capacity storage
- Workstation class
- Decoding limited platform
- Typical pipelines
 - → Background indexing
 - → Minimal real-time triggers
- Main KPIs
 - \rightarrow Recording capacity
 - → Video Metadata (VMD) Indexing capacity
 - → Price: \$ / channel

- Example Based on Premio FlacheSAN1N36M
 - CPU AMD Epyc
 - NVMe / Al x36 M.2
- Performance

Traffic (10 Gb)	< 300 channels
Recording	48 hr / channel
Analytics	Configurable 1∶1 → 1: GOP
\rightarrow Total channels	256

Management Server

- Server class host
- Heterogeneous configuration (CPU + GPU + NPU)
- Typical pipelines
 - → Video metadata
 - → Real-time event triggers
 - \rightarrow Visualization overlay
- Main KPIs
 - \rightarrow Display capacity
 - → Triggering latency

1	Len	ovo SR630-V2						
		CPU	Xeon Gold					
	•	AI	2x Falcon H-8 (200-300 TOPS)					
 Performance 								
		Decoding (2MP)	1600 fps					
		Display (4K @301	-ps) 4					
		Analytics (TOPS/d	ch) 1.5					
		ightarrow Total channels	64 @ 25 / 48 @ 30					

Case Study I: Accuracy / Minimize false triggering

- Accuracy is not just an academic KPI
- It translates into concrete VMS value in the event triggering entity
 - → Lower disk space ⇔ more channels for same platform

- KPI:
 - \rightarrow x4 on capacity (16 \rightarrow 64 channels)
 - → 85% <u>reduction</u> on false alarms

Jp to 64 × cameras

Case Study 2: Load balancing / Offloading

- **Offloading** main processing entity
 - \rightarrow Forwarding only relevant data crop
- Lowering latency to enable shorter RTT
- Better **privacy**,

нли

- Forwarding only cropped data
- Information distribution

© Hailo 2023

19

Storage duration restrictions (GDPR)

Edge Box with Hailo-8™

SmartFace

Case Study 3: Scalability

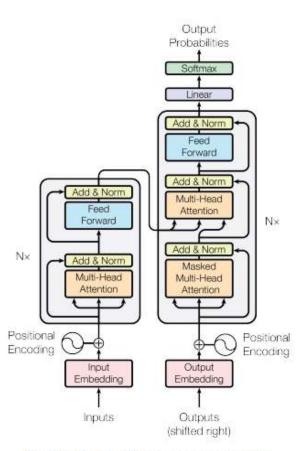
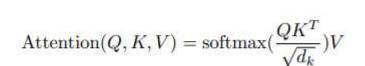
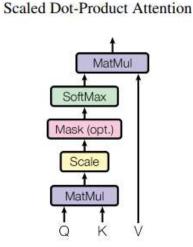
- A well-balanced system gives the opportunity for consistency across scales
- Al analytics is no longer a bottleneck

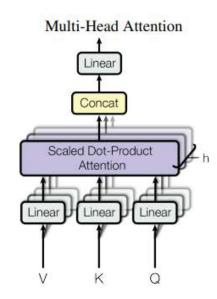
Trending up – better analytics, for more reasons

- Trend #1: Mixing text & video
 - \rightarrow Result of the recent evolution in **transformers**
 - \rightarrow Enabling effective mixture of vision & NLP
- Trend #2: More Analytics
 - → Leverage analytics beyond event triggering
 - Lower streaming bandwidth
 - Improve storage indexing
 - Enhance display capabilities
 - Equip management entity with perception advantages
 - \rightarrow Enabled by the lower TCO of advanced analytics (less \$ / function / channel)

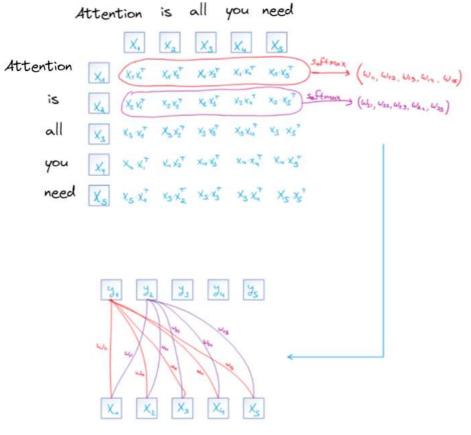
The Rise of Transformers

Introduced in 2017 in "Attention Is All You Need / Vaswani et. al."


Figure 1: The Transformer - model architecture.

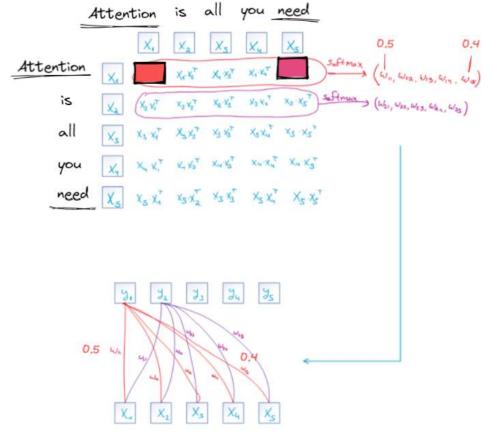
- Introduced in 2017 in "Attention Is All You Need / Vaswani et. al."
- New building block Multi-Head Attention (MHA)



- Introduced in 2017 in "Attention Is All You Need / Vaswani et. al."
- New building block Multi-Head Attention (MHA)
- MHA is:
 - → Global (Context-aware)
 - → Dynamic (Data-driven)

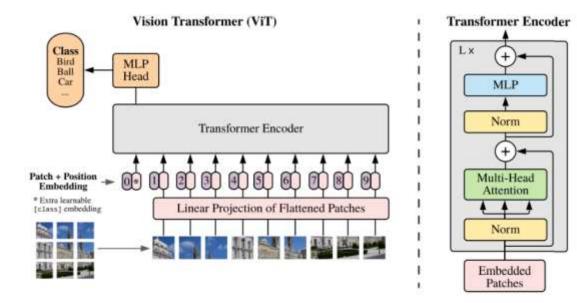
© Hailo 2023

25


- MHA is:
 - → Global (Context-Aware)
 - → Dynamic (Data-driven)

 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

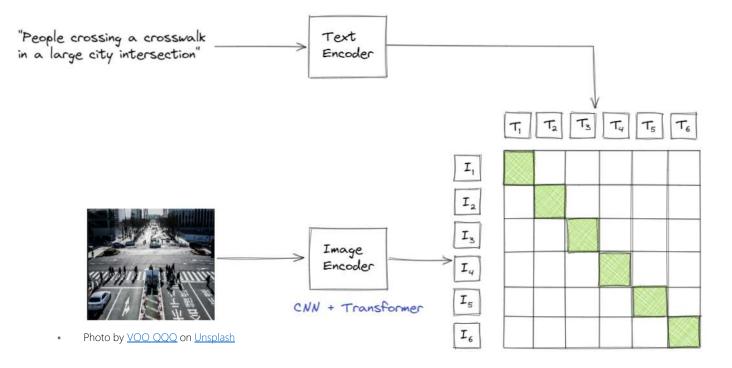
- MHA is:
 - → Global (Context-Aware)
 - → Dynamic (Data-driven)



 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

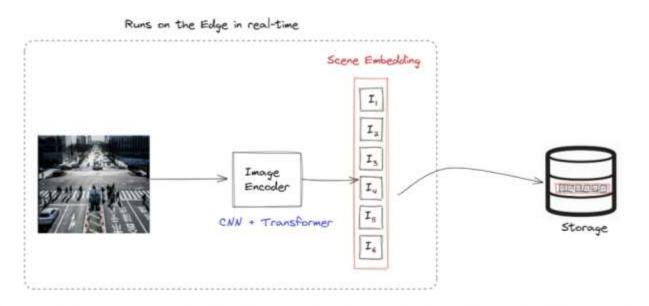
Transformers for computer vision

- Introduced in 2017 in "Attention Is All You Need / Vaswani et. al."
- Introduced for NLP but generalized across tasks vision in particular
 - \rightarrow An Image Is Worth 16X16 Words / Dosovitskiy et al. 2020

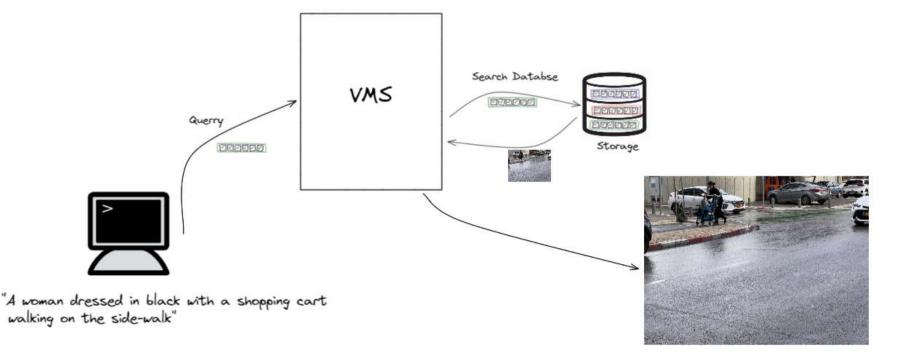

Why Transformers?

- Why are Transformers so popular?
 - → Scale well with data
 - \rightarrow Highly parallel and efficient to train
 - \rightarrow Simple architectures continue the trend of less domain expertise
 - → Make it easy to **fuse across domain/modalities**
 - → Sota

Why Transformers?

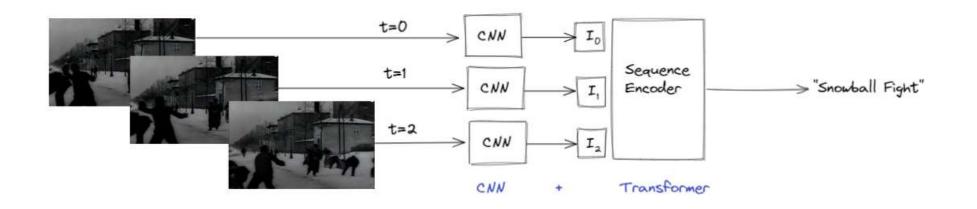

- Why are Transformers so popular?
 - → Scale well with data
 - \rightarrow Highly parallel and efficient to train
 - \rightarrow Simple architectures continue the trend of less domain expertise
 - → Make it easy to **fuse across domain/modalities**
 - → Sota
- Are CNN's dead?
 - \rightarrow No! Strong priors on the task translate to **efficiency**.
 - \rightarrow Still the choice for small/mid range models
- Best of both worlds: CNN +Transformer

Language + Vision unlocks semantic search

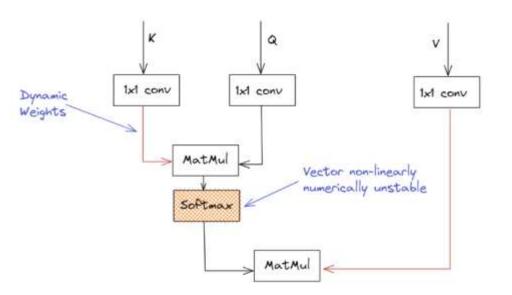

Training Stage - Train on images with captions using contrastive learning.

Language + Vision unlocks semantic search

Inference Stage - run only the Image Encoder and store the embedding on storage


Language + Vision unlocks semantic search

Offline Stage - search in the database using natural language


Frame fusion for activity recognition

- Transformers are excellent at working on long sequence
- Can be used to classify activity over long times efficiently.

Transformers acceleration on Hailo

- Transformer acceleration on the edge
 - → Dynamic weights data driven weight
 - → High Throughput Softmax
 - When using external engine results in bottleneck
 - Implemented directly on NN core
- Transformers have inherent increase latency

Hailo Support For Transformer

- SW Suite 2023-01 includes support for Transformers
 - \rightarrow MZ release of ViT
 - \rightarrow First edge AI accelerator able to run ViT-B in real-time.

Model	Embedding	#heads	#layers	Params [M]	Ops [G]
ViT-B	768	12	12	86	17.5

- We believe in transformers on the edge
 - \rightarrow Intense work over the past two years
 - \rightarrow Ongoing optimization in all facets of our product

Empowering Product Creators to Harness Edge AI and Vision

The Edge AI and Vision Alliance (<u>www.edge-ai-vision.com</u>) is a partnership of 100+ leading edge AI and vision technology and services suppliers, and solutions providers

Mission: To inspire and empower engineers to design products that perceive and understand.

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at www.edge-ai-vision.com

The Alliance enables edge AI and vision technology providers to grow their businesses through leads, partnerships, and insights

For membership, email us: membership@edge-ai-vision.com

edge ai + vision A L L I A N C E^{**}

Join us at the Embedded Vision Summit May 22-25, 2023—Santa Clara, California

The only industry event focused on practical techniques and technologies for system and application creators

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2023 highlights:

eers to desion systems that perceive + understand

- Inspiring keynotes by leading innovators
- High-quality, practical **technical, business and product talks**
- Exciting demos, tutorials and expert bars of the latest applications and technologies

Visit <u>www.EmbeddedVisionSummit.com</u> to learn more and register

embedded

VISION

ΤΗΛΝΚΥΟυ

