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https://www.youtube.com/embed/1_SiUOYUoOI

Object Detection: Introduction

3[ Bochkovskiy A. et al ]

https://www.youtube.com/embed/1_SiUOYUoOI


Input: A single image 
(typically RGB)

Output: A set of 
detected objects as class 
label and bounding box

Objects: From a  set of 
classes. Person, things, 
even Texts

Object Detection: Task
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Object Detection: Applications
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[ researchleap.com/ | psimagazine.co.uk/ ]
[ Sang-gil Lee et al, MICCAI 2018 ]

[ learn.arcgis.com/ | vectorstock.com/ ]



• Multiple Outputs

• Image can have variable number of objects from 
various classes

• Can also have high overlap between objects in the 
image

• Multiple Types of Outputs

• Need to output what (class label) and where
(bounding box)

• High Resolution Images

• Classification works at 224x224. Higher resolution 
is needed for detection.

Object Detection: Challenges
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[ image credit Bochkovskiy A. ]



Object Detection: Evolution of Models
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. . .

Traditional

One-stage

Two-stage
• Viola Jones
• HOG
• DPM

Deep Learning Transformers

• Fast R-CNN
• Faster R-CNN

• FPN• R-CNN

• YOLO

• SSD
• RetinaNet
• YOLOv2

• CornerNet
• CenterNet
• EfficientDet

• YOLOv5 
• DeTR, Swin



Object Detection: Simple Approach
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CNN Model

Classification head: What

Detection head: Where

Correct label: Bird

Bbox: (x’, y’, w’, h’)

4
0
9
6

Class Scores

Bird: 0.90
Cat: 0.05
Dog: 0.01
… 

Bounding 
Box

(x, y, w, h)

Softmax
Loss

L2 Loss

Weighted 
Sum

Multitask Loss

[ Bird picture: https://pixabay.com/ ]

• Question: What is the problem with this setup?

It cannot detect if the image has multiple objects.



• Use selective search to identify a manageable number of object region candidates (region of interest or 
RoI). 

• Extracts CNN features from each region independently for classification.

R-CNN Class of Models

9[ Girshick et al, CVPR 2014 ]



1. Propose category-independent RoIs by selective search

2. Warp region candidates to a fixed size as required by CNN, e.g. 224x224

3. Generate potential bounding boxes, and then run a classifier on these proposed boxes, e.g. SVM

4. Refine the bounding boxes, eliminate duplicate detections, and rescore the boxes based on other 
objects in the scene

R-CNN Steps in Detail

10[ Girshick et al, CVPR 2014 ]
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R-CNN: Impacts / Limitations
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Cannot be 
trained end-

to-end

Requires 100s 
of GB of 

storage space

Not suitable to 
run real-time 
applications

Selective 
search is not 
optimized for 
object detection

Pioneered the 
CNN for object 

detection

Sets the stage 
to evolve the 

field

• 30K citations

• 4K papers with 
title "R-CNN" 1

[ 1Google Scholar advanced search. allintitle:"R-CNN" ]



• Run a single CNN on the entire image. Get RoIs from the image features instead of the image itself.

• Share computations across all ROIs rather than doing calculations for each proposal independently.

• Does not need to cache extracted features in the disk. The architecture is trained end-to-end with a 
multi-task loss.

Fast R-CNN

12
[ Paper: Girshick , ICCV 2015 ]
[ Image: https://www.mathworks.com/ ]
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• Nearly cost-free region proposals using Region Proposal Network (RPN), that shares convolutional features with the 
detection network.

• The convolutional computations are shared across the RPN and the Fast R-CNN, effectively reducing the computation time.

Faster R-CNN

13

• Introduced multi-scale anchor boxes to detect objects of various sizes.

[ Ren et al, NeurIPS 2015 ]



Slow, Fast, and Faster R-CNN
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each region
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[ image credit: Justin Johnson, University of Michigan]

Differentiable cropping to shared 
image features

Compute region proposals with 
CNNs



• Use pyramidal feature hierarchy for efficient detection of objects of various sizes.

• Model Architecture: Backbone model (VGG) and SSD head. SSD head outputs the bounding box 
and object classes. 

• Large fine-grained feature maps (lower level) at are good at capturing small objects and small 
coarse-grained feature maps detect large objects well (higher level).

Single Shot Detector: SSD

15[ Wei Liu et al, ECCV 2016 ]
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• Eliminate RPN. Use grid cells technique to detect object of various sizes.

• Predicts offset of predefined anchor (default) boxes for every location of the feature map.

• The anchor boxes on different levels are rescaled so that one feature map is only responsible for 
objects at one particular scale. 

SSD: Steps

16[ Wei Liu et al, ECCV 2016 ]

• Cat (Small Object) is captured by the 8x8 feature 
map (lower level).

• Dog (Large Object) can only be detected in the 4x4 
feature map (higher level)

Fine-grained Coarse-grained



• One of the first attempts to build a fast, real-time object detector. 

• YOLO Frames the object detection as a single regression problem, straight from image pixels to 
bounding box and class probabilities. Hence, YOLO, You Only Look Once.

• The final prediction of shape S × S × (5B + C) is produced by two fully connected layers over the whole 
conv feature map.

YOLO Class of Models

17

[ Paper: Redmond et al, CVPR 2016. ]
[ image: https://lilianweng.github.io/ ]



YOLO: Steps and Limitations
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• Split the image into SxS cells. Each cell predicts 

• The location of bounding boxes as (x, y, w, h), a confidence score, and a probability of 
object class

• Final prediction is S × S × (5B + C). For PASCAL VOC S=7, B=2, C=20. That is why the final map 
is 7x7x30

[ Redmond et al, CVPR 2016. ]

• Cannot detect group of small objects. 
Maximum B (here, 2) objects per cell

• Irregular shaped objects



YOLOv2 and Beyond
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• Light-weight base model, 
DarkNet-19

• BatchNorm on conv layers

• Conv layers to predict anchor 
boxes

• Direct location prediction

YOLOv2

• Latest in the series

YOLOv8

• Logistic regression for 
confidence scores

• Multiple independent classifiers 
instead of one softmax

• Skip-layer concatenation

YOLOv3

[ Redmond et al, CVPR 2017 ]

. . .



• DETR frames the object detection task as an image-to-set problem. Given an image, the model predicts 
an unordered set of all the objects present.

• Existing methods have number of components that make them complicated.

Transformer-based Detectors: DETR

20
[ Carion N, Massa F et al ]

RPN



• Directly predicts the final set of 
detections in parallel

• During training, bipartite matching 
uniquely assigns predictions with 
ground truth boxes. 

• Predictions with no match yield a “no 
object” class prediction.

Transformer-based Detectors: DETR

21
[ Carion N, Massa F et al ]

• Slow convergence, 5x slower than 
Faster R-CNN

• Poor detection on small objects



• Task of detecting objects from a video, such as in autonomous driving scenario

• Challenges

• Appearance deterioration 

• Changes of video frames, e.g., motion blur, part occlusion, camera re-focous, rare poses etc.

• Aggregate temporal cues from different frames. Two-step baseline models (Faster R-CNN, R-FCN)

• Box-level. Post-processing of temporal information.

• Feature-level. Improve features of the current frame by aggregating that of adjacent frames.

Object Detection in Video

22

• Recent. Use one-step models such as YOLO / DETR to build end-to-end detectors.



• Precision measures how accurate are the predictions of the detector, aka, percentage of 
correct predictions.

• Recall measures how good the object detector can detect all the positives.

• IoU measures the overlap between GT and predicted boundaries.

Evaluation Metrics

23

intersection

IoU =

poor goodpoor

[ Bird picture: https://pixabay.com/ ]

• Average Precision (AP) computes the mean precision value for recall value over 0 to 1.

union



1. Run the detector for all test images

2. For each category: for each detection

1. Compute the AP, which is area under PR curve 

2. Plot a point on PR curve if IoU > 0.5

3. mAP = average of AP for each category

4. COCO mAP : average AP for IoU from 0.5 to 0.95 
with a step size of 0.05.

Mean Average Precision (mAP)

24

• Speed of the detection is usually quantified with FPS

0.99 0.95 0.90 0.50 0.10

All Bird detections sorted by scores

All GT Bird boxes

IoU > 0.5



Benchmark Analysis

25



Object Detection at the Edge: Considerations / Tradeoffs
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• CPU / GPU / NPU

• Real-time applications

• High resolution images

Compute / Speed

• Some edge devices do 
not support NMS

Post-Process

• Model size / #Params

• RAM / Flash

• Imbalanced memory 
distribution in first conv 
layers

Memory
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• Single-stage models 
have lower mAP

Accuracy

• Higher precision models 
usually have lower FPS

FPS



• Design New Model

• Design new model architecture that runs on your target device and train it [Not Recommended]

• Smaller version of an existing model and train it, such as FOMO, MCUNetV2

• Transfer Learning

• Fine-tune an existing model on your custom data. For example, TF Detection Model Zoo.

• Pick a model that works best for your use-case and target hardware.

• Pre-training Optimizations

• Quantization-aware training of existing models

• Post-training Optimizations

• Model pruning / quantization

• Hardware specific optimizations: TFLite / TensorRT / ONNX / similar

Object Detection at the Edge: Develop and Optimize

27



Object Detection at the Edge: Example
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• MobileNetV2 base model

• Patch-by-patch inference to solve 
imbalanced memory distribution

• Receptive Field redistribution to 
reduce computation overhead

MCUNetV2

[ MCUNetV2: Lin et all, NeurIPS 2021 ]

On Pascal VOC

• 68.3% (+16.9) with 438kB SRAM

• 64.6% (+13.2) with 247kB SRAM

• Only 7 FPS

• Not tested on high resolution 
images



Object Detection: What is Next?
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• Accuracy of two-stage 

• Speed of one-stage

Fastest R-CNN

• Particularly critical for 
autonomous driving

3D Obj Detection

• Training at the edge 
devices

• Adapt to data drifts

On-device Training

• Efficient detection in 
video

• Has so many real-world 
applications

Detection in Video

• More algorithms/ 
models

• Compatibility towards 
edge devices

Transformers



• Object detection applications and challenges

• Evolution of object detection systems

• Some of the popular object detection models

• Considerations and tradeoffs of object detection for edge applications

• Optimizing object detection systems for edge devices

Conclusion
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31

Questions / Discussions



• Off the shelf object detection models: 

• TensorFlow OD model Zoo

• TensorFlow Mobile Optimized Detectors

• Detectron 2: object detection using PyTorch and model zoo

• Object detection training datasets

• Pascal VOC dataset

• MS COCO Dataset

• Object detection training frameworks

• TensorFlow Lite , Example object detection for mobile devices

• PyTorch example object detection using pre-trained models

• Get hands-on

• Train YOLOv4 using Google Colab

Resources
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https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md#mobile-models
https://github.com/facebookresearch/detectron2
http://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org/#home
https://www.tensorflow.org/lite/examples
https://www.tensorflow.org/lite/examples/object_detection/overview
https://towardsdatascience.com/object-detection-and-tracking-in-pytorch-b3cf1a696a98
https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg?usp=sharing#scrollTo=O2w9w1Ye_nk1

