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How should the robot represent the information in its visual
observations?
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What is a Good Visual Representation? vision
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Current state-of-the-art for many computer vision
tasks involves learned representations that are:
pretrained without supervision!
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What is a Good Visual Representation? vision

Image x () d(x)

Good representations organize information conveniently for the task.
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Current state-of-the-art for many computer vision
tasks involves learned representations that are:
pretrained without supervision!

representation encoder
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Background: Contrastive Unsupervised Learning \ébﬂﬁp

Pull two views of the same image together in the representation
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What is to stop the representation from collapsing to z(x) = 0 vx?
To prevent this, push different images to have different representations ,
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Background: Contrastive Unsupervised Learning ‘ébﬂﬁp

Pull two views of the same image together in the representation

Joint Embeddln? Architecture

Key Id of Contrastive Learning:
Train representations from a collection of unlabeled images by
pulling together andpushlng apart the right image pairs

What is to stop the representation from collapsing to z(x) = 0 vx?
To prevent this, push different images to have different representations .



What is a Good Visual Representation for embedded
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Overview: The Reinforcement Learning (RL) embedded
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Agent'’s objective: maximize the discounted sum of “reward” over time by
executing a good action sequence a4, a,, ...,

max R(m) = IE[ E yir(se, at;5t+1)]
T
t=0
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Task-Conditioned “"Universal” Value Functions \é{%ﬁp

- Optimal Value Function of A State ... Conditioned On A Task g [Schaul et al 2015]

V*(sg;9) = E Eytr(st, as, St+1; 9)
t=0 .

“How good is this state for completing the task g (if acting optimally)™?

« IV Value functions are a useful abstraction:
 Can guide policy improvement such as through RL

« Well-known “Bellman equation” constraints connecting V values at
consecutive steps, permitting easy dynamic programming-style learning.

» Don't require known actions
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Key Idea: Representations as Value Functions \ébﬂﬁp
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Key Idea: Representations as Value Functions
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Key Idea: Representations as Value Functions \é{%ﬁp
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Representation ¢ () should be rich enough so that it easily expresses V'~
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Key Idea: Representations as Value Functions \é{%ﬁp
Image o () ¢ (o)
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Goal language g d'() ol (g) distance 0.8
“squeeze ;
bt:ih H | Train ¢, ¢' through training
dry” = the value function:

V' (6(0).9'(9)) = d($(0). ¢'(9))




Pre-Train on Pre-Recorded In-the-Wild Human \7??,?3}’1
Videos ddoe !
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Human videos are goal-directed, and abundant!
 Treat the final frame of any video as the goal
« Reward function? r = 1 for last step of video, 0 elsewhere.
« Actions not available, but no problem: we only care for V*(s)

14
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Offline RL Value Function Training Objective \é{%ﬁp

Pulls every frame o
preceding g to have high

V*(o;g)

Ept) [ (1= N Epo(or) [18(0) = 3(9)llz] + 108 Eo o9y [exp (116(0) = 8(9) 12 = 8 (0) = 716(0") = 89115

Encourages V*(:;9) = ||¢(-) — ¢p(g)||, to become a
valid (“Bellman-consistent”) value function.

— pulls frames together

— pushes frames apart

Training representations as value functions with offline RL
generates a new control-aware contrastive learning objective!
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Results: Image — Language-Goal Distance d(¢(0), ¢'(g)) \(Iﬂﬁp
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Normalized Distance

Results: Image — Image-Goal Distance d(¢(0), ¢'(g))
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On demo data, our representations predict smooth goal-conditioned V*

on human and robot videos.
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What Can We Do With ¢(:) and ¢!(-)? vision

sumMmMIT
- Use as representations for robot learning:

« Training robot policies on image representation with:
* behavior cloning
« language-conditioned behavior cloning [Lynch 20]

- Use as dense reward functions to guide reinforcement policy learning:

*R(o0,a,0';9) =V*(0',g9) —=V*(0,9) = ||[$p(0") — p(@Il2 — ||$(0)
—d(9)ll2

« offline RL (reward-weighted regression [reters 071) for policy learning from noisy
demos

« online policy improvement with trajectory optimization and RL (natural policy
gradient [Kakade '01])

18



Quantitative Results Summary

Results: Real-World BC / Offline RL From 20 Demos

Pre-Trained In-Domain
Environment VIP-BC R3M-RWR R3M-BC | Scratch-BC VIP-RWR VIP-BC
CloseDrawer 50 + 50 80 + 40 10 + 30 30 + 46 0+o 0*=+o
PushBottle 50 + so0 70 4 46 50 + 50 404 a8 0*+o 0*+to
PlaceMelon 10 £ 30 Oto 040 O+fo 0*+o 0*+to
FoldTowel 20 & 40 0+o0 0xo 0+o 0*+o 0*<xo

Results: Language-Conditioned Behavior Cloning

1. Open Drawer
2. Close Drawer

Success Rate

2. Open Left Door ||
3. Slide Cabinet |

4. Switch on Light
5. Turn on Stove

LIV CLP R3M VIP LIV CLIP R3M VIP

< wh v ;-.‘ N " i y
1 MetaWorld 1Franka Kitchen
19
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Noisy demos — Language Goal-Based Policies ‘ébﬂﬁp

Goal: “Place the pineapple in the pot”
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Noisy demos — Image Goal-Based Policies
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Takeaways vision
summiT

For a robot to make decisions about good actions, in what format should it
internally represent the images from its camera stream?

« Modern visual representations leverage deep neural networks self-supervised from
large unlabeled datasets of images, largely focus on visual recognition use cases.

* No explicitly robot-focused representations before the work presented here.

- Training representations as goal-conditioned “universal value functions”: a
powerful new way to learn control-aware vision, language, (and other?)
representations.

22
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Resources VISIOon
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The work presented here is covered the following papers:

* Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, Dinesh
Jayaraman. LIV: Language-Image Representations and Rewards for
Robotic Control. ICML 2023.

* Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert
Bastani, Vikash Kumar, Amy Zhang. VIP: Towards Universal Visual Reward
and Representation via Value-Implicit Pre-Training. ICLR 2023.

For further reading on self-supervised representations:
 Balestriero et al, A Cookbook of Self-Supervised Learning. arXiv 2023.
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