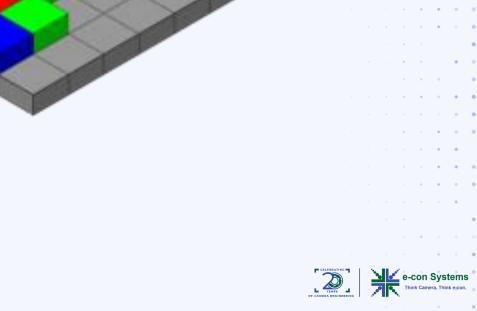


MASTERING IMAGE QUALITY:

The Power of Imaging Signal Processors in Embedded Vision

Suresh Madhu Head of Product Marketing e-con Systems

Arun Asokan Head of the ISP Division e-con Systems



What Application expects from a camera?

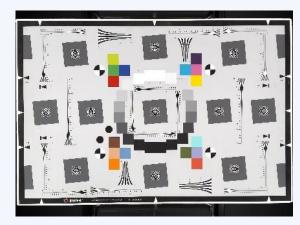
- Understandable Image format
 - * RGB888
 - RGB565
 - YUV422
 - ✤ YUV420, etc.
- Accurate Color Reproduction
 - Across all color temperatures
- Perfect Exposure
- High Dynamic Range
- Reduced Noise

			•	* * *		RA BC GE	G G	R)u†	tpu	ut		•								
			•	*		RC	βB	G,	et	С.	÷	·				·	•							
								1			•		•	•	•	•								
							•				•	•	•		•	•	•							
									•				•	•		•		•						
									•	•	•		•	•	•		•							
				•	1		•	•	•	•		1		•	•	•		•	1					
		•	•	•		•		1	•	•			•	•					1		1			
			•																					
	Ì.			<u>.</u>		1	Ľ	Ĩ.		Ì.		÷.	÷.	Ľ	÷.		1		÷.	÷.				
		•		•		•	•			•	•			•										
•	•	•	•	•	•	•	•	•	•	•	•		•	•										
	•	•	•		•			•	•	•	•	•	•			•								
	•		•				•				•	•	•	•	•		•							
•	•			•		•		•		•		•			•	•	•							
	•				•		•					•				•	•							

Color inaccuracies with varying color temperatures

Programmed Exposure Time

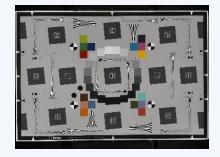
Under exposed


• •

30 ms

Properly exposed

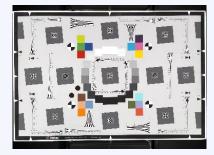
30 ms



Over exposed

Multi frames - no HDR processing

10 ms

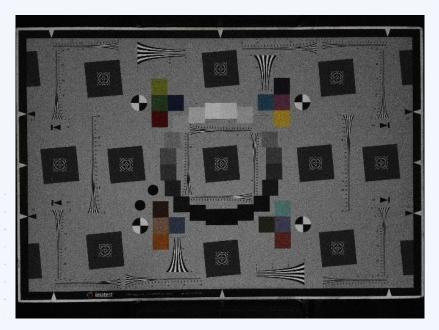

Gain 6dB


• •

• •

.

20 ms



Gain 12dB

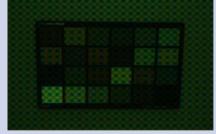
Captures noise

10 lux - Noisy

• •

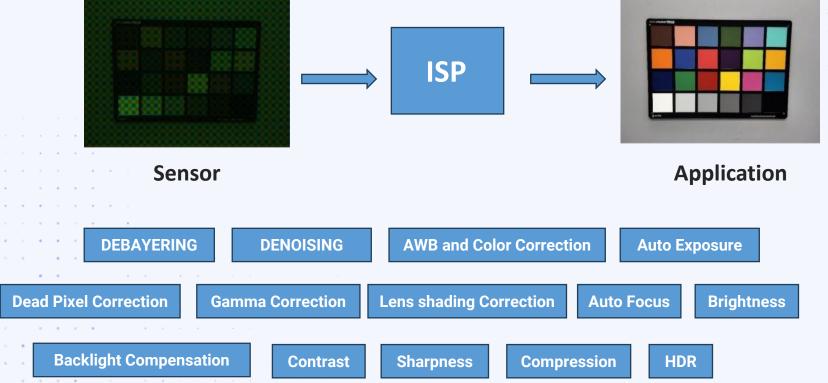
• •

• • • • •


e-con Systems Think Camera. Think e-con.

What Application expects vs What Sensor provides

	Application	Sensor
	Image format that requires RGB information in each pixel	RAW Bayer Output - Only one color pixel in each pixel
	Accurate Color Reproduction	Color inaccuracies with varying color temperatures
· ·	Perfect Exposure	Programmed Exposure
•	High Dynamic Range	Multi frames - no HDR processing
· · ·	Noiseless	Captures noise
•		


.

						•	•	•		•
						1		•	•	
									•	•
								•	•	•
								•	•	
								•	•	•
								•		•
									•	
										•
								•		•
		CELEB	ATING	· N.	1		in c	Vote		

Image Signal Processor

e-con Systems Think Camera. Think e.con.

.

• •

Types of ISPs

Standalone ISPs

- > High processing power , High flexibility for customization
- Advanced image processing detailed noise reduction, HDR, and sophisticated color processing
- Higher cost

.

- High impact on form factor
- No or Lower CPU/GPU load

On-sensor ISPs

Low processing power, No flexibility

Basic image processing

Cost Effective

> No impact on form factor

➢ No or Lower CPU/GPU load

Types of ISPs

Host Processor ISPs

> Moderate processing power , No or low flexibility for customization

- Moderate image processing detailed noise reduction, HDR, and sophisticated color processing
- Cost effective
- > No impact on form factor
- Moderate CPU/GPU load

• •

.

Software-based ISPs

>	High flexibility				
>	Basic/Advanced image processing				•
>	Cost Effective				•
>	No impact on form factor			•	•
>	High CPU/GPU load				
>	Potential Latency issues				
					:
					:
					:

Types of ISPs

ISPs Comparison

	Standalone ISPs	On-sensor ISPs	Host-based ISPs	Software based ISPs
Image Processing Capability	High	Low	Moderate	High
CPU/GPU Load	Low	Low	Moderate	High
Cost Effective	High	Moderate	Low	Low
Impact on Form Factor	High	Low	Low	Low
Latency	No	No	No	High

.

• • •

.

e-con Systems Think Camera. Think e-con.

:

• •

. . .

•

Parameters that define an ISP's contribution to image quality

									1	•	•							

✓ What could it do?

✓ How well it does it?

										•																				
								•					•	•																
					•			•	•			•	•							÷										
		•				•				•		٠	•			•	•	÷												
						•			•		•	٠	•			•														
•		•	•	•	•	•		•				•	•	•	•			÷												
•		•	•		•	•		•			•	•			•	•														
•		•							•	•	•		•	-	•	•														
	•	•	•		٠	•		•	•		•	•	•	•					1											
•		•	•		٠			•	•		•	٠	•	•	•	•				1										
	•	•	•		•	•			•	•			•			•	•		•											
	•	•	•	•	•	•	•	•	•	•		•	•																	
•	٠	•		•	٠		•	•	•	•		•			•		•	1												
•		•				٠				•	•	•	•	•		•														
•			•				•		•		•			•	1	•														
•				٠																										

. .

• • •

• What could it do?

How well it does it?

- Types of sensors supported
- Types of IQ processing blocks supported
- ✤ Data rate in the overall pipeline

Types of sensors supported

																	•			*	•	Support for resolution and the data
											•	•	•	•	•	•	•			*	•	Support for different Color Filter Arrays (Bayer, Monochrome, and RGB-IR)
																				.*		Support for different HDD types (aplit
										•	•	•		•	•			•		**		Support for different HDR types (split
									•	•	•				•	•	•		÷			pixel HDR, DOL HDR, etc.)
-				• •	•		•	•	•	•	•			•	•				÷			
-								•	•			•		•	•				÷			
		•	•	•				•			•		•	•	•						÷	
•	•		•		•	•	•	•		•				•	•	•	•					
		•	•		•		•	•		•			•	•			•	-				
•			•								•	•	•		•	•	•					
•	•		•	• •	•		•	•		•	•		•	•	•	•					÷	
•			•		•		•			•	•		•	•	•	•	•	•	÷.			
				•	•		•	•			•	•			•		•		1		÷	
•	•	•	•	• •	•	•	•	•	•	•	•	•		•	•							
•	•		•	• •		•			•	•	٠	•	•	•			•		•	1		
•			•	•				•				•	•	•	•	•						
•		•	•		•				•		•		•			•	•					
•			•			•		•					•				•					
•	•						•															

. . .

. .

Types of IQ processing blocks supported

e-con Systems

.

 Basic blocks - De-mosaic, color correction, lens shading correction, gamma, contrast/tone mapping, noise reduction, sharpness, scaler/resizer, etc. Auto blocks - 3A (Auto exposure, Auto white balance, and Autofocus) Advanced blocks - HDR processing, temporal noise reduction, color processing, distortion correction, etc.

.

Data rate in the overall pipeline

- Based on support for the data rate handled by each of these blocks
- Pipeline for video streaming or still capture to be determined
- Impacts multi-camera streaming

•

. . .

• • •

.

What could it do?

• How well it does it?

- ✓ Color accuracy
- ✓ Spatial Frequency Response
- ✓ Signal to Noise Ratio
- ✓ Uniformity
- ✓ Dynamic Range

.

.

· · · · · · · · · · · · · · ·

and the second second second second

Color Accuracy

- Reproducing colors under different types of lighting
- Using multiple ISP blocks like de-mosaic, color correction and auto white balance blocks

.

• •

Uniformity

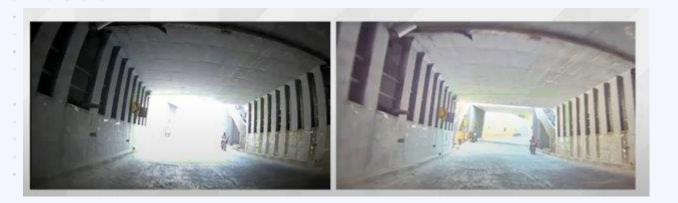
- Maintaining uniformity of the output brightness in terms of center to the corners
- Handling lens-related brightness fall off
- Using the lens shading correction block

Circulto Noice Detic

Signal to Noise Ratio

- Effectively retaining the signal (when compared to noise)
- Using multiple ISP blocks like noise reduction, sharpness, and
 - temporal noise reduction

Spatial Frequency Response


- Reproducing various scene details
- Using multiple ISP blocks like de-mosaic, sharpness, and scaler

Dynamic Range

.

- Reproducing the brightest and darkest parts of the scene
- Bringing out the small contrast variations within these limits
- Using multiple ISP blocks like HDR processing, gamma, and contrast/tone mapping

									•	•	1							

How these blocks operate, given the ISP limitations, leads to performance

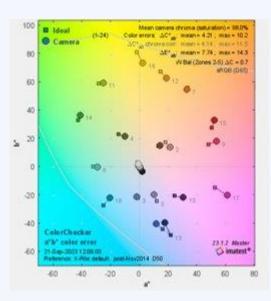
differences. Limitations include memory, power consumption, speed, and algorithms

								•	•	•	1.1	• •			•															
					•			•	•		•	•		•		•	•													
		÷	•	•			•	•	•			• •					•													
		•	•			•				•		• •			•	•	•													
	•	•		•		•	•		•		•	• •			•			•												
	•		•	•	• •	•		٠				•	•	•			•													
	•		•	•	•	•		•			•	•		•	-															
	•		•						•	•	•	•	•	•	•															
	•	•	•	•	•	•		•	•		-	• •	•																	
	•		•	•	•			•	•		•	• •	•	•	•	•														
		•	•	•	•	•			•	•		•		1	•	•														
•	•	•	•	•	• •	•	•	•	•	•		•••																		
	•	•	•		• •		•	•	•	•	•	•		1		•														
	•		•			•				•	•	• •	•		•															
•	•			•	•		•		•		•		•																	

	C CAMER	YEARS A ENGINE		<u> </u> 	e-t	CON nk Cam	Sys era. Thir	tem:	s •	
							•		•	
						•				
									•	
								•		
									•	
									•	
					÷.	÷				
					÷.	1				
					÷.			•		
					1				•	
						•	•		•	
						•	•	٠	•	
					•	•	•	•	٠	
IS.					÷		•	•	•	
								•	•	
									•	
						1	÷			

. . .

. .


e-con camera IQ report (reference)

													-		•					((
					•		•	•			•	•		•									
		•	•			•		•	•	•	•			•	•								
•	•	•	•		•	•		•						•	•		•						
•				•	•	•					÷				•	•		•	•				•
	•	•	•				•	•									•				•	•	
•	•			•	•	•			•											•	•		
•	•			•	•	•	•	•															

.

Color Accuracy

		Chroma	a errors
Light	Mean chroma (Sat) %	(∆C*ab)	(∆E*ab)
Α	103.2	10.2	7.45
U30	90.2	9.61	7.31
TL84	95.2	8.59	5.37
CWF	94.1	8.47	5.43
D65	98.0	7.74	4.21

.

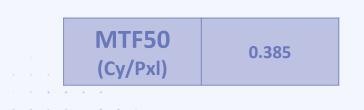
.

.

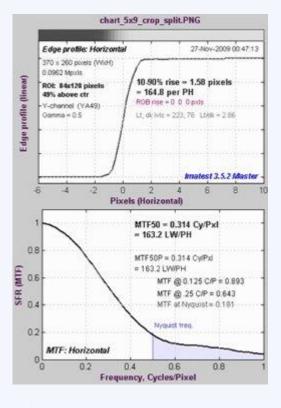
• • •

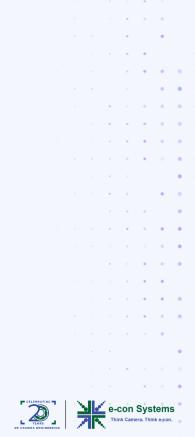
. .

.


••••

.


• •


. . .

Spatial Frequency Response

• •

													-	-									
					•		•	•			•	•		•									
		•	•			•		•	•	•	•			•	•								
•	•	•	•		•	•		•				•		•	•		•						
•				•	•	•									•	•		•	•				•
	•	•	•				•	•													•	•	•
•	•			•	•	•			•											•	•		
•	•			•	•	•	•	•															

SNR

Part plbet = 2 (no = 1) (bet = 6429) 7

Gost, Indepth

-65

= 20%optblg, * Caminance (-speed), where

49-bit color max105380 of 65535

ISO SNR 38.7dB (dB)

.

. .

• •

. .

. .

.

. .

. .

.

. .

. .

•

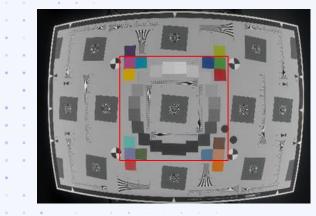
.

.

.

.

. . .


•

.

.

.

. .

.

• •

. . .

. . .

.

.

• •

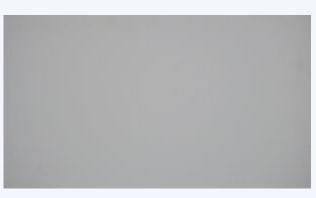
. .

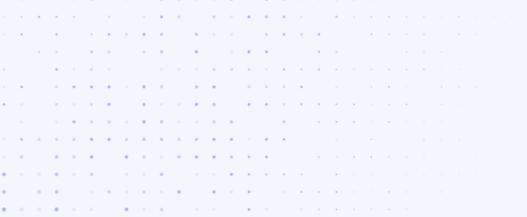
• •

.

.

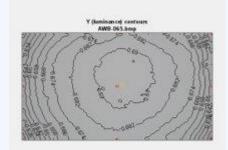
.

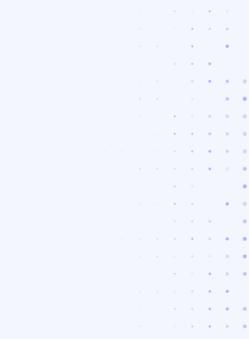

. . .


.

.

. . . .


Uniformity


• • • •

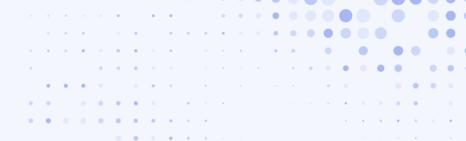
Corner% // Sides% 87.6 // 90

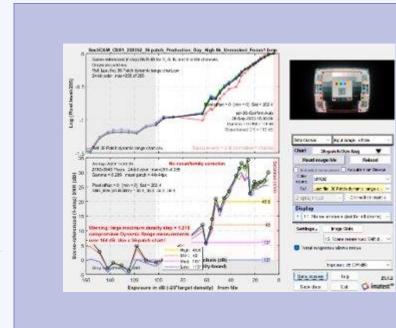
Non = 0.607 evolution to 11 to pleas (350 (30 (10 pois seried) Commex words = 0.602 (85 /Mg, maily = 0.411 (82 /Mg, Solids - 0.616 (956 /Mg, maily = 0.411 (82 /Mg, Solids - 0.616 (956 / 0.601 - 0.601 - 0.601 L # 11 # = 3.026 (0.641 - 0.601 - 0.601 L # 11 # = 3.026 (0.641 - 0.601 - 0.601 L # 11 # = 3.026 (0.641 - 0.601 - 0.601 L # 11 # = 3.026 (0.641 - 0.601 - 0.601 L # 11 # = 3.026 (0.641 - 0.60

imatest* 23.1.2 Mean 25-549-2023 17-49-30

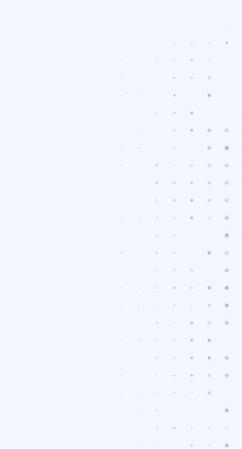
. . .

Dynamic Range


• • • •


.

. . . .



Dynamic Range

113dB

									•	•	1						

• •

• •

• •

.

How to fine-tune ISPs for different application demands

									•	•	1						

Based on Image Sensor and Lens

																		+									
									•	•	•		•	•			•										
					•				•	•				•	•												
						•			•	•			•	•					-								
							•						•						-								
							•					•		•													
				•		•	•							•													
			•				•		•			•	•														
	•													•													
•		•	•	•		•				•				-	•												
				•		•			•	•		•	•														
		•				•	•				•			•		-		-									
			•	•	•	•	•		•	•	•		•	•													
	•		•		•			•	•	•			•														
	•		•				•				•																
	•																										

the second s

•

. .

- Based on Image Sensor and Lens
- Based on the Use Case

- Each sensor has to be matched with the De-mosaic algorithm depending on its CFA
- Tuned for color correction and white balance at different illuminant types (different CCTs)
- Lens shading correction and distortion correction are calibrated based on the type of lens and illuminant

- Based on Image Sensor and Lens
- Based on the Use Case
- Better color accuracy in low-light situations increasing chroma noise in low-light
- Superior spatial frequency response at very high-frequency details – useful for recognizing text and small details (but causes aliasing artifacts)
- High SNR in low-light situations performing denoising,
 which may impact scene details or sharpness

- Based on Image Sensor and Lens
- Based on the Use Case

High dynamic range can:

.

- Affect the overall contrast of the image, compromising small contrast variations in scene details
- Introduce transition noise and artifacts where the scene transitions from bright to dark

Certain algorithms or blocks take time to process each frame - leading to resolution and/or frame rate trade-offs

									•	•							

Case Studies:

How e-con Systems empowered clients with real-world ISP tuning

									•		•	•									
	•					•			•	٠	•										
		•		•	•	•		•				•	•								
					•	•			•												
				•	•			•	•												
			•		•	•						•									
	•	•					٠								1						

the second s



Surveillance systems

- Tuned for HDR, effective SFR without aliasing and 'pleasing to eye' color reproduction
- Requires typical full HD resolution and 30 fps
- Good SNR in low light and need for special CFA such as RGB-IR for superior day-night performance

💒 e-con Systems

• • • • •

• •

Automotive cameras

- > Need for capturing images at a higher frame rate with HDR
- > Need for good contrast over the entire scene's dynamic range
- End consumption display or AI algorithms for object detection (pedestrian, lane, vehicle, etc.)
- > Distortion correction algorithms for de-barreling the scene

.

Medical/Scientific Cameras

- Need for ensuring true colors without too much post-processing
- ISP must have full control over the color processing and output of the frames in uncompressed formats
- Demand for multispectral capabilities

Facial recognition-based access systems

- > Auto exposure to be precisely tuned to illuminate the face properly
- Contrast and sharpness blocks to consistently bring out the details in the face at various lighting conditions
- Different skin tones to be truly reproduced with color tuning, as well as tuned auto algorithms and IQ blocks

.

. .

Smart Agriculture Cameras

- Need for bringing out minor variations in the green color of the plants
- Tuned color accuracy to reproduce greens and sharpness without affecting the SNR

Emerging trends in ISP technology

AI and ML

Integration of AI and machine learning algorithms for advanced image processing and analytics

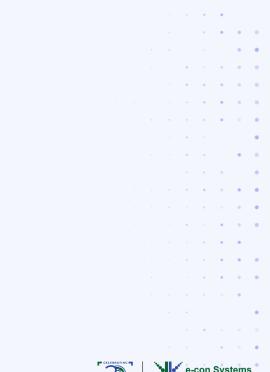
New-age ISPs

Development of ISPs for high-speed, real-time processing applications like autonomous vehicles and security systems

Energy saving

.

Focus on energy optimization for portable and battery-powered devices


Low-light performance

Improvements in low-light performance and high dynamic range capabilities

More use cases

.

Expansion into new applications such as medical imaging and industrial inspection

Empowering Product Creators to Harness Edge AI and Vision

The Edge AI and Vision Alliance (<u>www.edge-ai-vision.com</u>) is a partnership of 100+ leading edge AI and vision technology and services suppliers, and solutions providers

Mission: To inspire and empower engineers to design products that perceive and understand.

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at www.edge-ai-vision.com

The Alliance enables edge AI and vision technology providers to grow their businesses through leads, partnerships, and insights

For membership, email us: membership@edge-ai-vision.com

Join us at the Embedded Vision Summit May 21-23, 2024—Santa Clara, California

The only industry event focused on practical techniques and technologies for system and application creators

- "Awesome! I was very inspired!"
- "Fantastic. Learned a lot and met great people."
- "Wonderful speakers and informative exhibits!"

Embedded Vision Summit 2024 highlights:

- Inspiring keynotes by leading innovators
- High-quality, practical technical, business and product talks
- Exciting demos, tutorials and expert bars of the latest applications and technologies

Visit www.EmbeddedVisionSummit.com to learn more and register

embedded

VISION

sum

MASTERING IMAGE QUALITY

The Power of Imaging Signal Processors in Embedded Vision

O & A

Visit us at

www.e-consystems.com

Write to us at

camerasolutions@e-consystems.com

Think Camera. Think e-con.