

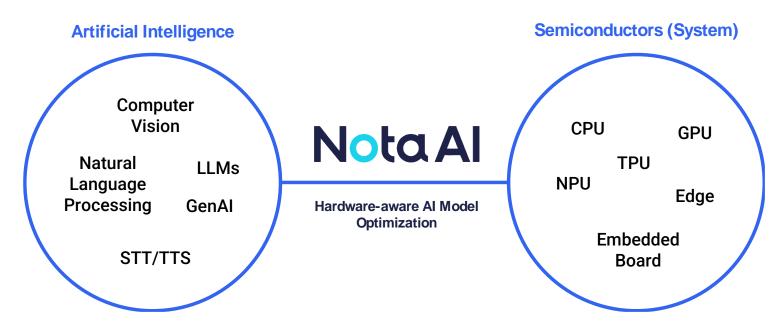
Optimized Vision Language Models for Intelligent Transportation System Applications

Tae-Ho Kim

CTO & Co-Founder

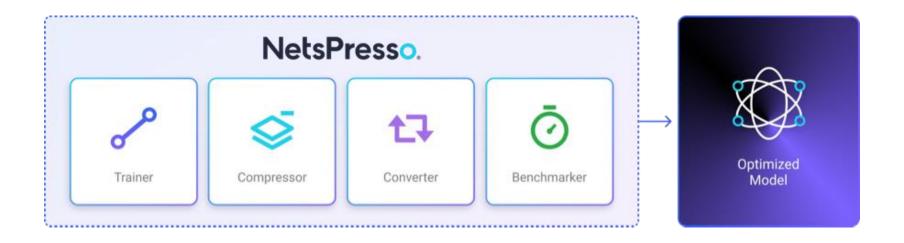
Nota Inc.

Introduction



- In this talk, we explore the challenges in ITS.
- How vision language model (VLM) can solve these challenges.
- Future work will also be addressed.

Identity of NotaAl



Nota AI bridges the gap between AI & semiconductors.

Nota Al's Main Product: NetsPresso

NetsPresso® simplifies AI model optimization for target devices with automated processes.

Platform & Edge Solutions: Elevating Excellence

Using NetsPresso, Nota AI also has created a solution business in ITS

NotaAl's Expertise

LLM Optimization

LLaMA-7B -- LLM-Pruner 4.9B Batch size (B) = 1 8192 B128 4096 Throughput (tokens/s) 2048 2048 256 128 2.7 ₩B32 Latency (s) LLaMA-7B FLAP (Width) LLM-Pruner (Width)< Ours (Depth⊶) 1.8 25.6 12.6 ₫B1 64 32 1.6 3.4 4.3 5.2 6.1 7 # Parameters Latency (s)

Stable Diffusion Optimization

4.0s (-29%)

3.9s (-29%) 3.9s (-29%)

Nota AI also specializes in GenAI compression

iPhone 14

Intelligent Transportation System (ITS)

Enhancing Traffic Flow: Real-Time Lightweight ITS Solutions

Smart Intersection System

Real-time incident detection and analysis for safe road condition

VRU Safety Solutions

Al-based real-time hazardous situation screening and control system

Automatic Incident Management System

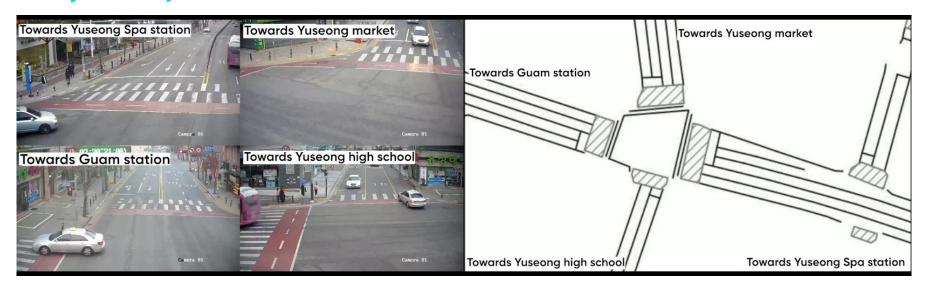
Real-time incident detection and analysis for safe road condition

AI Smart Parking

Real-time parking occupancy and parking facility utilization analysis

Use Case 1: Smart Intersection System

- Daejeon metropolitan city ITS construction project
- Intersection CCTV AI video analysis (600 ch)
- 98% accuracy in traffic volume counting in night and rainy conditions



Use Case 2: Al Safe Crossing

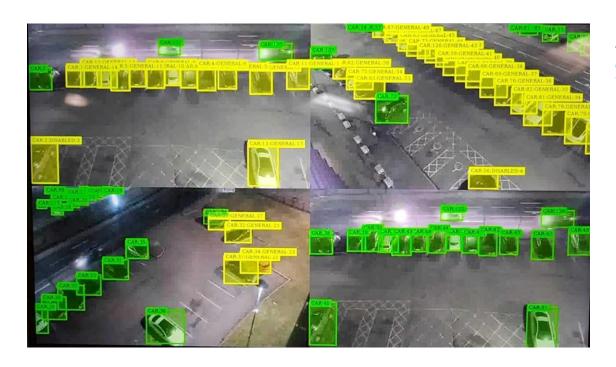
10

Daejeon City | Implementing LDM using vehicle trajectory prediction information

Use Case 3: VRU Safety Solutions

11

National Highways | C-ITS: Al video analysis for smart crosswalk safety transmitted through V2X communication



Use Case 4: AI Smart Parking

12

 USA San Diego outdoor parking management (Caltrans)

 UK Milton Keynes stadium outdoor parking management

Challenges in ITS

- Ill-posed problem: How can we define "road debris"?
- Contextual problem: How can we define "accidents" with object detection?
- Rare dataset: How can we obtain dataset?

Ill-posed Problem: Road Debris

Can it be detected by legacy AI models?

Contextual Problem: Accident Detection

15

Can it be detected by legacy AI models?

Challenges in ITS

- Ill-posed problem: How can we define "Road debris"?
- Contextual problem: How can we define "Accidents" with Object detection?
- Rare dataset: How can we obtain dataset?

Requires super-generalized model: Foundation Model

Foundation Model on the Edge: Challenges in Industrial Al

17

As-is **Problem** Inference Result Rule-based algorithm is fragile. Logic added for new requirements. Logic Layer (Kalman filtering...) Errors on the object detection/tracking propagate to logic layers. On-site calibration. Data drift. Data acquisition on rare events is hard. Deep Learning Model Sophisticated model composition. On-site calibration. Input Image

Foundation Model on the Edge: Challenges in Industrial Al

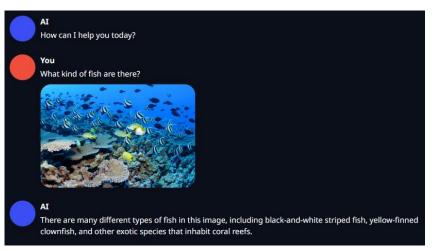
18

To-be Inference Result Foundation Model (VLM)

Input Image

Features

- VLM is capable of comprehending complex scene.
- VLM already contains various logic.
- VLM is robust on data drift.
- VLM is aware of rare events.
- VLM needs less or no calibration.
- Still, VLM is not understanding video.



Vision Language Model: LLaVA

19

LLaVA Live LLaVA

Source: jetson-ai-lab.com

Working Prototype of LLaVA on Accidents Detection

20

Benchmark on Models

Llava-13B (Jetson AGX Orin)	Quantization	Tokens/sec	Memory
text-generation-webui	4-bit (GPTQ)	2.3	9.7 GB
llava.serve.cli	FP16 (None)	4.2	27.7 GB
llama.cpp	4-bit (Q4_K)	10.1	9.2 GB
local_llm	4-bit (MLC)	21.1	8.7 GB

Source: jetson-ai-lab.com

Future Work

- More advanced optimization required
- VLM needs to comprehend temporal consistency
- Domain adaptation might be required for user specific scenario
- Interface for product required
- Prompt engineering is required for higher performance

Conclusion

- Industrial AI is already a widely used technology, but technology is limited when the problem is complex and underdetermined.
- Among GenAl models, a Vision Language Model (VLM) can understand complex scenes, so it could analyze complex queries and events.
- For example, in ITS, road debris and car accidents are severe problems, but this couldn't be solved by legacy AI models.
- Using VLMs, these problems can be solved as well.
- However, VLMs are still computationally expensive, so lightweight VLMs are required for the next step.

Visit Nota Al @318!

Thank you for your attention!

