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Brainchip AI – At a Glance

• First to commercialize neuromorphic IP 

platform and reference chip.

• 15+ yrs fundamental research

• 65+ data science, hardware & software 

engineers

• Publicly traded Austrialian Stock 

Exchange (BRD:ASX)

• 10 Customers – Early Access, Proof of 

Concept, IP License

*Fulfillment through VVDN technologies
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• Provide path to run complex models on the Edge

• Reduce cost of training

• Reduce cost of inference

Key Focal Areas

©2024 BrainChip Inc.
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Temporal Event Neural Networks (TENNs)
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Change the Game 

©2024 BrainChip Inc.

Unleash Unprecedented Edge Devices

ONE DIMENSIONAL
STREAMING DATA

Up to 5000X
More Energy Efficient

Up to 50X
Fewer Parameters

Same Or Better 
Accuracy

10-30X
Lower Training cost vs. GPT-2
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TENNs Application Areas

©2024 BrainChip Inc.

1. Multi-dimensional streaming requiring spatiotemporal integration
(3D)

• Video object detection – frames are correlated in time.

• Action recognition – classifying an action across many frames

• Video frame prediction – path prediction & planning

2. Sequence classification and generation in time:

• Raw audio classification: keyword spotting without MFCC preprocessing

• Audio denoising: generate contextual denoising

• ASR and GenAI: compressing LLMs 

3. Any other sequence classification or prediction algorithms

• Healthcare: vital signs estimation

• Anything that can be transformed into a time-series/sequence prediction 
problem

Spatiotemporal Integration
Kinetics400 KITT

I

Sequence classification & generation

BIDMC Vital Signs SC10 Raw Audio

Microsoft DNS Challenge
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https://blog.google/technology/ai/google-deepmind-rt2-robotics-vla-model/


Improve Video Object Detection
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Frame Based Camera Comparison
(vs SimCLR + ResNet50 using Kitti2D Dataset**)

Network mAP
(%)

Parameters
(millions)

MACs / sec
(Billions)

Akida TENN* + 
CenterNet

57.6 0.57 18

Equivalent    
precision

50x fewer 
parameters    

5x fewer
operations

< 20 mW
For 30 FPS in 7 nm***

Resolution
1382 x 512

Event Based Camera Comparison
(vs Gray Retinanet + Prophesee Road Object Dataset*)

Network mAP
(%)

Parameters
(millions)

MACs / sec
(Billions)

Akida TENN* + 
CenterNet

56 0.57 94

30% better
precision

50x fewer 
parameters    

30x fewer
operations

Resolution
1280 x 720

*    Gray Retinanet is the latest state of art in event-camera

object detection 

**   SimCLR with a RESNET50 backbone is the benchmark in

object detection -- Source: SiMCLR Review

***  Estimates for Akida neural processing scaled from 28 nm

7

https://www.lightly.ai/datasets


TENN Can Be Extended to Spatio-Temporal Data

©2024 BrainChip Inc.

DVS Hand Gesture Recognition: IBM DVS128 Dataset

State of the Art 

Network Accuracy 
(%)

Parameters MACs (billion) / 
sec

Latency*

(ms)

TrueNorth-CNN 96.5 18 M - 155

Loihi-Slayer 93.6 - - 1450

ANN-Rollouts 97.0 500 k 10.4 1500

TA-SNN 98.6 - - 1500

Akida-CNN 95.2 138 k 0.12 200

TENN-Fast 97.6 192 k 0.429 105

TENN 100.0 192 k 0.499 510
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https://openaccess.thecvf.com/content_cvpr_2017/papers/Amir_A_Low_Power_CVPR_2017_paper.pdf
https://arxiv.org/abs/1810.08646
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214871/
https://arxiv.org/abs/2107.11711#:~:text=Temporal%2Dwise%20Attention%20Spiking%20Neural%20Networks%20for%20Event%20Streams%20Classification,-Man%20Yao%2C%20Huanhuan&text=How%20to%20effectively%20and%20efficiently,has%20various%20real%2Dlife%20applications.


Enhance Raw Audio and Speech Processing
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Task: Audio Denoising

Comparison of TENN Versus SoTA

Model Deep Filter 
Net V1

TENN Deep Filter 
Net V2

Deep Filter 
Net V3

PESQ 2.49 2.61 2.67 2.68

Params
(relative 
to TENN)

2.98 1 3.86 3.56

MACs
(relative 
to TENN)

11.7 1 12.1 11.5

BRAINCHIP | TENN

STFT iSTFT
Conv1D/LSTM/

GRU

Traditional Denoising Model Approach

TENNs

TENNs Model Approach

Potentially consume 50%+ of 
total power

STFT/iSTFT overhead and BOM not 
needed with TENNs

• Audio denoising isolates a voice signal obscured by background noise

• Traditional approach employs computationally intensive time domain to 

frequency domain transform and the inverse transform

• TENNs approach avoids expensive data transformations

©2024 BrainChip Inc. 10



TENN vs GPT2

Single thread CPU performance, 11th Gen Intel i7 - 3.00 GHz

Both models were prompted with the first 1024 words of the Harry Potter 1st novel

> 2100 tokens/minute < 10 tokens/minute

©2024 BrainChip Inc.©2024 BrainChip Inc. 11



Task: Sentence Generation

Model GPT2 
Small

GPT2 
Medium

TENN Mamba
130M

GPT2 large GPT2 full Mamba
370M

Train_size 13 GB 13GB 0.1 GB 836GB 13GB 13GB 836GB

Score 9.7 10.2 10.3 10.4 10.4 10.8 10.9

Params
(relative to TENN)

1.35 4.8 1 2.06 10.4 21.7 5.9

Energy
(relative to TENN)

1700 5700 1 2.06 13000 27000 5.9

Training Time
(relative to TENN)

~768 GPU 
hours
21x

~2264 GPU 
hours
62.8x

35 GPU hours

1. TENN trained on WikiText-103. 100M tokens
2. GPT models trained on open_web_text, Mamba trained on the Pile
3. TENN training time: ~1.5 days on (1) A100 (35 GPU hours)
4. GPT-2 Small training time: 4 days on (8) A100 (768 hours)
5. GPT-2 Medium estimated training time
6. Scores reported as negative entropy:−𝑙𝑜𝑔2 1/𝑉𝑜𝑐𝑎𝑏𝑆𝑖𝑧𝑒 − 𝑙𝑜𝑔2 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (higher better)
7. Input (context) was 1024 tokens ©2024 BrainChip Inc.

©2024 BrainChip Inc. 12



Technical Details

©2024 BrainChip Inc. 13



• Colored plane represents the continuous 
kernel we’re trying to learn

• Red arrows represent the individual weights 
in a 7x7 filter

• A large number of weights requires a large 
amount of computation

• Results in slow training and large memory 
bottlenecks

Learning Continuous Convolution Kernels

©2024 BrainChip Inc. 14



Representing Convolution Kernels with Orthogonal 
Polynomials

©2024 BrainChip Inc.

Chebyshev polynomial basis can lead to exponential 
convergence for a wide range of functions, including 
those with singularities or discontinuities.*

*Lloyd N. Trefethen. 2019. Approximation Theory and Approximation Practice, Extended Edition. SIAM-
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

• TENNs learns the continuous kernel directly 

through polynomial expansion.

• Learn coefficients for polynomials through 

backpropagation.

• Training is much faster because the polynomial 

coefficients (weights) converge independently and 

do not affect each other due to polynomials being 

orthogonal to each other.

Chebyshev polynomial 
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Visualizing the Computation
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22 23 24 25

Polynomials 

Coefficients

𝐶1−12 ∙

𝑎𝑙

Input Buffer 𝐼(𝑡)

h(t − τ) =෍

𝑙=0

𝐿

𝑎𝑙 𝐶𝑙 𝑡 − τKernel 

𝜒 𝑡 = h ∗ 𝐼 𝑡 = න
𝑡−𝐷

𝑡

h t − τ 𝐼 𝜏 𝑑𝜏 ≈ ෍
𝑘=22

25

h t − 𝑘 𝐼 𝑘

Time (𝑡)

Convolution 

Convolution: 

ℎ

[0.011, 0.871, 0.235, 0.678, 0.547, 0.298, 0.045, 0.945, 0.478, 0.284, 0.765, 0.199]

h ∙ = 𝑎1 𝐶1 ∙ + 𝑎2 𝐶2 ∙ + 𝑎3 𝐶3 ∙ + 𝑎4 𝐶4 ∙ + 𝑎5 𝐶5 ∙ + 𝑎6 𝐶6 ∙ +  𝑎𝑛 𝐶𝑛 ∙

𝜒 𝑡 = 25 = σ𝑘=22
25 h 25 − 𝑘 𝐼 𝑘 = ℎ(3) 𝐼(22) + ℎ(2) 𝐼(23) + ℎ(1) 𝐼(24) + ℎ(0) 𝐼(25)𝜒

Nonlinear Output: 𝑜 𝑡 = 𝑓 𝜒 𝑡 𝑓 ∙ : nonlinear activation function: 
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Buffer Mode vs Recurrent Mode
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Recurrence: Chebyshev polynomials have a recurrence relationship.
Duality: This particular recurrence imputes duality to buffer mode as well as 
recurrent mode.

Buffer (Convolutional) Mode

Overview

Buffering inputs over time

Benefit

Speed up training by reading the 
memory buffer in parallel

Training stability improved by 
orthogonality

Drawbacks

Higher memory usage

Recurrent Mode

Overview

Update previous state over time

Benefit

Save memory by generating polynomials 
recurrently, timestep-by-timestep

Lower memory usage benefits inference

Drawback

Training has to be done sequentially
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Getting It to Market

©2024 BrainChip Inc. 18
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Key Hardware Features

• Digital, event-based, at memory compute

• Highly scalable

• Each node connected by mesh network

• Inside each node is an event-based TENN 

processing unit

Hardware IP to Run TENNs on the Edge
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Fundamentally different. Extremely efficient.

Brainchip’s Differentiation: Akida Technology Foundations

©2024 BrainChip Inc. 20



BrainChip Resources
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TENNs Paper “Building Temporal Kernels with Orthogonal Polynomials
https://bit.ly/brainchip_tenns

TENNs White Paper
https://brainchip.com/temporal-event-based-neural-networks-a-new-approach-to-temporal-processing/

Akida 2nd Generation
https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second_generation_Platform_Brief.pdf 

BrainChip Enablement Platforms
https://brainchip.com/akida-enablement-platforms/

Visit Us @ Booth #618
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https://bit.ly/brainchip_tenns
https://www.generic.orghttps/brainchip.com/temporal-event-based-neural-networks-a-new-approach-to-temporal-processing/
https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second_generation_Platform_Brief.pdf
https://brainchip.com/akida-enablement-platforms/
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Backup Slides
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Improve Efficiency Without Compromising Accuracy
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Simplifies solution to complex problems

Reduces model  size and footprint without loss in 

accuracy

Easy to train (CNN-like pipeline)

Supports longer range dependencies than RNNs

Temporal Event Based Neural Nets (TENNs)
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Principles:

1. Recurrence: Chebyshev and Legendre polynomials 
have recurrence relationship.

2. Duality: Recurrence imputes duality: Buffer mode 
as well as recurrent mode.

3. Stable training: Train in buffer mode

4. Fast Running: Run in recurrent mode. Small foot-
print

5. Insight: TENNs and SSM are a stack of generalized 
Fourier filters running in a recurrent mode, with 
non-linearities between layers. 

TENN Has Two Modes: Buffer and Recurrent Modes

©2024 BrainChip Inc.

Recurrent Mode
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TENN Has Two Modes: Buffer and Recurrent Modes
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h 𝑡 = σ𝑙=0
𝐿 𝑎𝑙 𝐶𝑙 𝑡kernel

convolution

Buffer mode: 

buffer for h(t) & buffer for I(t)

convolution: dot product over 2 buffers

Recurrent mode: 

h 𝑡 = σ𝑙=0
𝐿 𝑎𝑙 𝐶𝑙 𝑡kernel

L convolutions 
over polynomials

𝜒𝑙 = 𝐶𝑙 ∗ 𝐼(𝑡)

kernel convolution 𝜒 = σ𝑙=0
𝐿 𝑎𝑙 𝜒𝑙

𝜒 = h ∗ 𝐼(𝑡)

𝜒 = ෩𝒉 ∙ 𝑰 = σ𝑘
෩𝒉𝑘𝐼𝑘

Entire kernel is stored in a memory buffer accessible at 
once 

Convolution is computed in conventional way

Polynomials generated recurrently, timestep by timestep & 
not stored in memory

Convolution of input over L polynomials computed timestep 
by timestep, accumulated over time; L separate convolutions 

Kernel convolution is L polynomial convolutions weighted 
by the polynomial coefficients & summed

Buffer mode for fast parallel training: 

Recurrent mode saves memory : 
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