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Brainchip Al — At a Glance VISIN
SUMMIT’
%
First to commercialize neuromorphic IP g akida cﬂ' AWM
platform and reference chip. 8 = -y
Reference Software .
E IP SoC Tools Edge Box
15+ yrs fundamental research <
65+ data science, hardware & software a MegaChips
. Q Mercedes-Benz
engineers =
| RenEsSAS  ¥ORAGO-
Publicly traded Austrialian Stock = ~ )
Exchange (BRD:ASX) |
) arm = £poE
10 Customers — Early Access, Proof of
Concept, IP License TEKSUN A Labs
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Key Focal Areas VISIN
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* Provide path to run complex models on the Edge
* Reduce cost of training

* Reduce cost of inference

i i ©2024 BrainChip Inc.
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Temporal Event Neural Networks (TENNs)
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Change the Game

Unleash Unprecedented Edge Devices

ONE DIMENSIONAL
STREAMING DATA

brainchip
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TENNs Application Areas VISIN

Spatiotemporal Integration SUMMIT’

1. Multi-dimensional streaming requiring spatiotemporal integration
(3D)

* Video object detection — frames are correlated in time.

* Action recognition — classifying an action across many frames

* Video frame prediction — path prediction & planning

Sequence classification & generation

2. Sequence classification and generation in time:

BIDMC Vital Signs SC10 Raw Audio
* Raw audio classification: keyword spotting without MFCC preprocessing o %
* Audio denoising: generate contextual denoising ég W\‘W
* ASR and GenAl: compressing LLMs | ‘ E§§
3. Any other sequence classification or prediction algorithms v

*  Healthcare: vital signs estimation
8 Microsoft DNS Challenge

* Anything that can be transformed into a time-series/sequence prediction noisy raw speech denoised speech

problem . l " | | ‘ | ” '

brquh'p ©2024 BrainChip Inc. Output 6
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https://blog.google/technology/ai/google-deepmind-rt2-robotics-vla-model/
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Improve Video Object Detection VISITN

SUMMIT

Event Based Camera Comparison
(vs Gray Retinanet + Prophesee Road Object Dataset*)

Network mAP Parameters MAGCs / sec
(%) (millions) (Billions)
Akida TENN* + 56 0.57 94
CenterNet
Resolution
1280 x 720

Frame Based Camera Comparison
(vs SImCLR + ResNet50 using Kitti2D Dataset**)

Network mAP Parameters MAGCs / sec
(%) (millions) (Billions)
Akida TENN* + 57.6 0.57 18 *  Gray Retinanet is the latest state of art in event-camera
CenterNet object detection

" ** SimCLR with a RESNET50 backbone is the benchmark in

Recalutian bject detecti S SiMCLR Revi
object detection -- Source: Si eview
1382 x 512 1€ _ :
*** Estimates for Akida neural processing scaled from 28 nm

brainchip

Essential Al ©2024 BrainChip Inc.


https://www.lightly.ai/datasets

TENN Can Be Extended to Spatio-Temporal Data

DVS Hand Gesture Recognition: IBM DVS128 Dataset

TrueNorth-CNN 96.5 18 M - 155
Loihi-Slayer 93.6 - - 1450
ANN-Rollouts 97.0 500 k 10.4 1500
TA-SNN 98.6 - - 1500
Akida-CNN 95.2 138 k 0.12 200
I TENN-Fast 97.6 192 k 0.429 105 I
| 7enn 100.0 192 k 0.499 510 |

brainchip
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hand clap

State of the Art


https://openaccess.thecvf.com/content_cvpr_2017/papers/Amir_A_Low_Power_CVPR_2017_paper.pdf
https://arxiv.org/abs/1810.08646
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214871/
https://arxiv.org/abs/2107.11711#:~:text=Temporal%2Dwise%20Attention%20Spiking%20Neural%20Networks%20for%20Event%20Streams%20Classification,-Man%20Yao%2C%20Huanhuan&text=How%20to%20effectively%20and%20efficiently,has%20various%20real%2Dlife%20applications.
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Enhance Raw Audio and Speech Processing VISIN

SUMMIT
(" N
Without akida
Il [ " “
H11I[H] 1Y - = HE = (KB) (M/sec)
I {LF’LHJ A . cvworp  MRCCRDSONN  9243% 9361

: Il
e e

k - J
f

With akida
ol m
Ll Lakida |
TR e’ | ) KEYWORD Akida TENN*  97.12%
TENNs also show substantial benefit for audio-denoising # No addifional fiitering or DSP hardware
(Deep Noise Suppression), and other speech processing ¥ Much faster and power-efficient
\_ * Estimates on 28nm process J

brainchip
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Task: Audio Denoising wsmN

SUMMIT"
Comparison of TENN Versus SoTA Traditional Denoising Model Approach Separated
Mixture waveforms
waveform _ )
R e e
PESQ 2.49 2.61 2.67 2.68 L —Q
Params 2.98 1 3.86 3.56 Potentially consume 50%+ of
(relative total power
to TENN)
MACs 11.7 1 12.1 11.5
. Mixture TENNs Model Approach Separated
(relative waveform waveforms
to TENN) i ;

Audio denoising isolates a voice signal obscured by background noise

L

—

L
Traditional approach employs computationally intensive time domain to STFT/iSTFT overhead and BOM not
frequency domain transform and the inverse transform needed with TENNs

TENNs approach avoids expensive data transformations

brainchip BRAINCHIP | TENN
Essential Al
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TENN vs GPT2 VISIN
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Single thread CPU performance, 11th Gen Intel i7 - 3.00 GHz

Both models were prompted with the first 1024 words of the Harry Potter 1%t novel

ACROSS ITI HARRY HAD A SUSPICION SHE HAD BEEN JUST THAT WHEN SHE'

> 2100 tokens/minute < 10 tokens/minute

brainchip ©20% FHASHIRH Inc. "
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Task: Sentence Generation VISI'IN

SUMMIT"
Train_size 13 GB 13GB 0.1GB 836GB 13GB 13GB 836GB
Score 9.7 10.2 10.3 10.4 104 10.8 10.9
Params 1.35 4.8 1 2.06 10.4 21.7 5.9
(relative to TENN)
Energy 1700 5700 1 2.06 13000 27000 5.9

(relative to TENN)

Training Time ~768 GPU ~2264 GPU | 35 GPU hours
(relative to TENN) hours hours

21x 62.8x

TENN trained on WikiText-103. 100M tokens

GPT models trained on open_web_text, Mamba trained on the Pile

TENN training time: ~1.5 days on (1) A100 (35 GPU hours)

GPT-2 Small training time: 4 days on (8) A100 (768 hours)

GPT-2 Medium estimated training time

Scores reported as negative entropy:—log,(1/VocabSize) — log,(perplexity) (higher better)
Input (context) was 1024 tokens

Nowuhswhe

©2024 BrainChip Inc.
©2024 BrainChip Inc. 12
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Technical Details
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Learning Continuous Convolution Kernels VISI'N

SUMMIT

° Colored plane represents the Continuous 7x7 Filter with Gabor Weights and Approximated Weights
kernel we’re trying to learn

* Red arrows represent the individual weights
in a 7x7 filter

* Alarge number of weights requires a large
amount of computation

e Results in slow training and large memory
bottlenecks

!?Ig IPChIp ©2024 BrainChip Inc.
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Representing Convolution Kernels with Orthogonal VISION
Polynomials T
* TENNSs learns the continuous kernel directly Chebyshev polynomial
through polynomial expansion. T R i) — Tal) — Tl — Tal)

* Learn coefficients for polynomials through

backpropagation.

0.0

* Training is much faster because the polynomial
coefficients (weights) converge independently and .
do not affect each other due to polynomials being

-1.0F

orthogonal to each other. s = " T &

Chebyshev polynomial basis can lead to exponential
convergence for a wide range of functions, including
those with singularities or discontinuities.*

*Lloyd N. Trefethen. 2019. Approximation Theory and Approximation Practice, Extended Edition. SIAM-
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

!?Ig IPChIp ©2024 BrainChip Inc. 15
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Visualizing the Computation VISITN
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Time (t) 22 23 A 25

Polynomials . _ //,.‘-"/ . A\.\M//"J . ‘,‘-""‘f\\“-\/”; ! I"‘,‘I‘\’/l,."f\“‘.,‘_x ,.*"‘J .\“" . "‘,J,-"ﬁ'"x.\"-""‘:‘JA}"".J" . "’.""‘.‘._",."‘; ""‘-.V..""‘:ﬁl"‘-‘h‘l‘ . ‘lu;"lﬁl"‘-‘,‘_/,""ﬁ""-‘,‘“_‘,r‘ﬁ‘-‘l‘ “n‘, \ AN N

Coefficients [0.011, 0.871, 0.235, 0.678, 0.547, 0.298, 0.045, 0.945, 0.478, 0.284, 0.765, 0.199 |
h

L
Kernel h(t - T) = a; Cl (t - T) h(') = al Cl(') + a, CZ(.)+ as C3(')+ ay C4,()+ as Cs(')+ Ag CG()+ an Cn()
=0

Convolution x(t=25)=%2 ,h(25—k) I(k) = h(3)1(22) + h(2)I1(23) + h(1)1(24) + h(0) I(25)

t 25

Convolution: =h=I(t) = f h(t— 1) I(z) dr =~ Z h(t — k) I(k)
t—D k=22

Nonlinear Output: O(t) = f( ’ f(-): nonlinear activation function:

!?;rg IPChIp ©2024 BrainChip Inc. 16
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Buffer Mode vs Recurrent Mode VISIN

SUMMIT

Recurrence: Chebyshev polynomials have a recurrence relationship.
Duality: This particular recurrence imputes duality to buffer mode as well as
recurrent mode.

Overview Overview

Buffering inputs over time Update previous state over time
Benefit Benefit
Speed up training by reading the Save memory by generating polynomials
memory buffer in parallel recurrently, timestep-by-timestep
Training stability improved by Lower memory usage benefits inference
orthogonality
Drawback
Drawbacks
- Training has to be done sequentially

Higher memory usage

brainchip ©2024 BrainChip Inc. v
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Getting It to Market
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AXI Bus Interconnect

Hardware IP to Run TENNs on the Edge

...

AXI 4.0

)
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Temporal Event-based Neural Networks (TENN)

©2024 BrainChip Inc.

Vision Transformer

‘--------------'
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SUMMIT

Key Hardware Features
Digital, event-based, at memory compute
Highly scalable
Each node connected by mesh network

Inside each node is an event-based TENN
processing unit

19
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Brainchip’s Differentiation: Akida Technology Foundations {|S|"N

Fundamentally

101

000

Silicon-Proven, Fully
Digital Implementation

Cost-effective, predictable design
and implementation

On-chip Learning

One-shot/few-shot learning.
Minimizes sensitive data sent.
Improves security and privacy

brainchip

Essential Al

. Exiremely

(9)

Event-based Hardware Acceleration

Minimized compute and
communication - Minimizes
host CPU usage

N

B
O

Configurable And Scalable

Extremely configurable and
post-silicon flexibility

©2024 BrainChip Inc.

SUMMIT

At-Memory-Compute

Maximum throughput,
Lowers latency and system
bandwidth usage

—

L1y

Complex Models, High Accuracy

Unique spatial-temporal
capabilities, accelerates Vision
Transformers.

D
A
<

20
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BrainChip Resources VISI?N

SUMMIT

Visit Us @ Booth #618

TENNs Paper “Building Temporal Kernels with Orthogonal Polynomials
https://bit.ly/brainchip_tenns

TENNs White Paper

https://brainchip.com/temporal-event-based-neural-networks-a-new-approach-to-temporal-processing/

Akida 2" Generation
https://brainchip.com/wp-content/uploads/2023/03/BrainChip second generation Platform Brief.pdf

BrainChip Enablement Platforms
https://brainchip.com/akida-enablement-platforms/

!?sryc,‘\ IPChIp ©2024 BrainChip Inc. 21


https://bit.ly/brainchip_tenns
https://www.generic.orghttps/brainchip.com/temporal-event-based-neural-networks-a-new-approach-to-temporal-processing/
https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second_generation_Platform_Brief.pdf
https://brainchip.com/akida-enablement-platforms/
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Backup Slides
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Improve Efficiency Without Compromising Accuracy
Temporal Event Based Neural Nets (TENNSs)

Extremely efficient 3D convolutions

Spatial Convolution Temporal Convolution
(2D) (1D)

TENNs deliver the benefits of and are much
more efficient to train than RNNs

RNN

GRU

brainchip
Essential Al
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VISIN

SUMMIT®
3D Time Series
g 9 > Q& P’J
@ ¢ \V
® - @ ¢ ¢
o [ 5%
\ J

|

t
Simplifies solution to complex problems

Reduces model size and footprint without loss in
accuracy

Easy to train (CNN-like pipeline)

Supports longer range dependencies than RNNs

©2024 BrainChip Inc.
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TENN Has Two Modes: Buffer and Recurrent Modes

Principles:

1.

Recurrent Mode

embedded

VISITN

SUMMIT

Recurrence: Chebyshev and Legendre polynomials

have recurrence relationship. I

Duality: Recurrence imputes duality: Buffer mode
as well as recurrent mode.

Stable training: Train in buffer mode

Fast Running: Run in recurrent mode. Small foot-
print

Insight: TENNs and SSM are a stack of generalized
Fourier filters running in a recurrent mode, with
non-linearities between layers.

Layer-1
]
Layer-N
D
u B ? fr é—y — 1(y)
A
X =Ax+ Bu
y =Cx+Du
f) o

PI‘C’I‘IPChIp ©2024 BrainChip Inc.
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TENN Has Two Modes: Buffer and Recurrent Modes VISIN
SUMMIT®
Buffer mode: Buffer mode for fast parallel training:
kernel h(t) = {;0 Cl(t) Entire kernel is stored in a memory buffer accessible at

convolution = h = I(t) e
buffer for h(t) & buffer for I(1)
convolution: dot product over 2 buffers

:E'I:Zkrlklk

Recurrent mode: Recurrent mode saves memory :
_ Polynomials generated recurrently, timestep by timestep &
kernel h(t) Cl(t) not stored in memory

L COﬂVOlUTIOI’]S. = C; |+ I(t) Convolution of input over L polynomials computed timestep
over polynomials by timestep, accumulated over time; L separate convolutions

kernel convolution = %=0 Kernel convolu’ri'on is L pplynomiol convolutions weighted

by the polynomial coefficients & summed

Convolution is computed in conventional way

!?Ig IPChIp ©2024 BrainChip Inc. 25



