

Temporal Event Neural Networks: A More Efficient Alternative to the Transformer

Chris Jones Director Product Management BrainChip Inc.

Brainchip AI – At a Glance

- First to commercialize neuromorphic IP platform and reference chip.
- 15+ yrs fundamental research
- **65+** data science, hardware & software engineers
- Publicly traded Austrialian Stock Exchange (BRD:ASX)
- **10 Customers** Early Access, Proof of Concept, IP License

embedded

Key Focal Areas

• Provide path to run complex models on the Edge

• Reduce cost of training

• Reduce cost of inference

Temporal Event Neural Networks (TENNs)

Change the Game

Unleash Unprecedented Edge Devices

Up to 5000X More Energy Efficient

Up to 50X

Fewer Parameters

10-30X

Lower Training cost vs. GPT-2

Same Or Better Accuracy

TENNs Application Areas

Spatiotemporal Integration

- Multi-dimensional streaming requiring spatiotemporal integration (3D)
 - Video object detection frames are correlated in time.
 - Action recognition classifying an action across many frames
 - Video frame prediction path prediction & planning
- 2. Sequence classification and generation in time:
 - Raw audio classification: keyword spotting without MFCC preprocessing
 - Audio denoising: generate contextual denoising
 - ASR and GenAI: compressing LLMs
- 3. Any other sequence classification or prediction algorithms
 - Healthcare: vital signs estimation

brainchip

Anything that can be <u>transformed into a time-series/sequence prediction</u>
 problem

Improve Video Object Detection

Event Based Camera Comparison (vs Gray Retinanet + Prophesee Road Object Dataset*)						
Network	mAPParametersMACs / sec(%)(millions)(Billions)					
Akida TENN* + CenterNet	56	0.57	94			
Resolution 1280 x 720	30% better precision	50x fewer parameters	30x fewer operations			

Attil	

F	rame Based Came	era Comparison	et**)
(vs SimC	CLR + ResNet50 us	sing Kitti2D Datase	
Network	mAP	Parameters	MACs / sec
	(%)	(millions)	(Billions)
Akida TENN* + CenterNet	57.6	0.57	18
Resolution	Equivalent precision	50x fewer	5x fewer
1382 x 512		parameters	operations

- * Gray Retinanet is the latest state of art in event-camera object detection
- ** SimCLR with a RESNET50 backbone is the benchmark in object detection -- Source: <u>SiMCLR Review</u>
- *** Estimates for Akida neural processing scaled from 28 nm

brainchip Essential AI

TENN Can Be Extended to Spatio-Temporal Data

embedded VISION SUMMIT

DVS Hand Gesture Recognition: IBM DVS128 Dataset

	Network	Accuracy (%)	Parameters	MACs (billion) / sec	Latency [*] (ms)	
-	<u> TrueNorth-CNN</u>	96.5	18 M	-	155	
	Loihi-Slayer	93.6	-	-	1450	
	ANN-Rollouts	97.0	500 k	10.4	1500	
	<u>TA-SNN</u>	98.6	-	-	1500	
	Akida-CNN	95.2	138 k	0.12	200	
	TENN-Fast	97.6	192 k	0.429	105	
	TENN	100.0	192 k	0.499	510	

hand clap

State of the Art

Enhance Raw Audio and Speech Processing

Task: Audio Denoising

Comparison of TENN Versus SoTA

Model	Deep Filter Net V1	TENN	Deep Filter Net V2	Deep Filter Net V3
PESQ	2.49	2.61	2.67	2.68
Params (relative to TENN)	2.98	1	3.86	3.56
MACs (relative to TENN)	11.7	1	12.1	11.5

- Audio denoising isolates a voice signal obscured by background noise
- Traditional approach employs computationally intensive time domain to frequency domain transform and the inverse transform
- TENNs approach avoids expensive data transformations
 brainchip

TENN vs GPT2

Single thread CPU performance, 11th Gen Intel i7 - 3.00 GHz

Both models were prompted with the first 1024 words of the Harry Potter 1st novel

ACROSS IT

HARRY HAD A SUSPICION SHE HAD BEEN JUST THAT WHEN SHE

> 2100 tokens/minute

< 10 tokens/minute

Task: Sentence Generation

Model	GPT2 Small	GPT2 Medium	TENN	Mamba 130M	GPT2 large	GPT2 full	Mamba 370M
Train_size	13 GB	13GB	0.1 GB	836GB	13GB	13GB	836GB
Score	9.7	10.2	10.3	10.4	10.4	10.8	10.9
Params (relative to TENN)	1.35	4.8	1	2.06	10.4	21.7	5.9
Energy (relative to TENN)	1700	5700	1	2.06	13000	27000	5.9
Training Time (relative to TENN)	~768 GPU hours 21x	~2264 GPU hours 62.8x	35 GPU hours				

- 1. TENN trained on WikiText-103. 100M tokens
- 2. GPT models trained on open_web_text, Mamba trained on the Pile
- 3. TENN training time: ~1.5 days on (1) A100 (35 GPU hours)
- 4. GPT-2 Small training time: 4 days on (8) A100 (768 hours)
- 5. GPT-2 Medium estimated training time
- 6. Scores reported as negative entropy: $-log_2(1/VocabSize) log_2(perplexity)$ (higher better)
- 7. Input (context) was 1024 tokens

Technical Details

Learning Continuous Convolution Kernels

- Colored plane represents the continuous ٠ kernel we're trying to learn
- Red arrows represent the individual weights ٠ in a 7x7 filter
- A large number of weights requires a large ٠ amount of computation
- Results in slow training and large memory ٠ bottlenecks

7x7 Filter with Gabor Weights and Approximated Weights

Representing Convolution Kernels with Orthogonal Polynomials

- TENNs learns the continuous kernel directly through polynomial expansion.
- Learn coefficients for polynomials through backpropagation.
- Training is much faster because the polynomial coefficients (weights) converge independently and do not affect each other due to polynomials being orthogonal to each other.

Chebyshev polynomial basis can lead to exponential convergence for a wide range of functions, including those with singularities or discontinuities.*

*Lloyd N. Trefethen. 2019. Approximation Theory and Approximation Practice, Extended Edition. SIAM-Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Visualizing the Computation

Buffer Mode vs Recurrent Mode

Recurrence: Chebyshev polynomials have a recurrence relationship. **Duality:** This particular recurrence imputes duality to buffer mode as well as recurrent mode.

Recurrent Mode			
Overview			
Update previous state over time			
Benefit			
Save memory by generating polynomials recurrently, timestep-by-timestep			
Lower memory usage benefits inference			
Drawback			
Training has to be done sequentially			

Getting It to Market

Hardware IP to Run TENNs on the Edge

Key Hardware Features

- Digital, event-based, at memory compute
- Highly scalable
- Each node connected by mesh network
- Inside each node is an event-based TENN processing unit

Brainchip's Differentiation: Akida Technology Foundations

Visit Us @ Booth #618

TENNs Paper "Building Temporal Kernels with Orthogonal Polynomials <u>https://bit.ly/brainchip_tenns</u>

TENNs White Paper https://brainchip.com/temporal-event-based-neural-networks-a-new-approach-to-temporal-processing/

Akida 2nd Generation https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second_generation_Platform_Brief.pdf

BrainChip Enablement Platforms

https://brainchip.com/akida-enablement-platforms/

Backup Slides

Improve Efficiency Without Compromising Accuracy

Temporal Event Based Neural Nets (TENNs)

TENNs deliver the benefits of and are much more efficient to train than RNNs

brainchip

- * Simplifies solution to complex problems
- Reduces model size and footprint without loss in accuracy
- * Easy to train (CNN-like pipeline)
- * Supports longer range dependencies than RNNs

TENN Has Two Modes: Buffer and Recurrent Modes

Principles:

- 1. Recurrence: Chebyshev and Legendre polynomials have recurrence relationship.
- 2. Duality: Recurrence imputes duality: Buffer mode as well as recurrent mode.
- 3. Stable training: Train in buffer mode
- 4. Fast Running: Run in recurrent mode. Small footprint
- 5. Insight: TENNs and SSM are a stack of generalized Fourier filters running in a recurrent mode, with non-linearities between layers.

Recurrent Mode

Layer-N

В

Layer-1

D

24

f(v)

TENN Has Two Modes: Buffer and Recurrent Modes

Buffer mode:

convolution

kernel

$$h(t) = \sum_{l=0}^{L} a_l C_l(t)$$
$$\chi = h * I(t)$$

buffer for h(t) & buffer for I(t)

convolution: dot product over 2 buffers

 $\boldsymbol{\chi} = \boldsymbol{\tilde{h}} \cdot \boldsymbol{I} = \sum_k \boldsymbol{\tilde{h}}_k \boldsymbol{I}_k$

Recurrent mode:

kernel

L convolutions over polynomials

kernel convolution

Buffer mode for fast parallel training:

Entire kernel is stored in a memory buffer accessible at once

Convolution is computed in conventional way

Recurrent mode saves memory :

Polynomials generated recurrently, timestep by timestep & not stored in memory

Convolution of input over *L* polynomials computed timestep by timestep, accumulated over time; *L* separate convolutions

Kernel convolution is *L* polynomial convolutions weighted by the polynomial coefficients & summed