

Image Signal Processing Optimization for Object Detection

Young-Jun Yoo EVP NEXTCHIP CO., LTD.

NEXTCHIP Overview

World-class ISP In-house Core

- Developing & optimizing vision core; Image signal processing technology for 27 years
- Tuning know-how with various MP models with global OEMs and Tiers
- Tuning capability for human vision & machine mision
- Open architecture with various image sensors, CFAs (color filter arrays)

ASIC Design Technology

- Automotive process foundry experience;
- 14nm/28nm/55nm/60nm/95nm
- Samsung/Global Foundries/USJC/TSMC

Automotive Reliability

- ISO26262; Functional safety
- Cyber security
- CMMI Lv.-3
- A-Spice process
- AEC-Q100 Gr.2 lineup

Image Signal Processing Optimization for Object Detection

Chapter 1: What is the Difference? Human Vision vs. Machine Vision

Chapter 2: The Image Tuning Challenges for Human Vision

Chapter 3: The Image Tuning Challenges for Machine Vision

Image Signal Processing Optimization for Object Detection

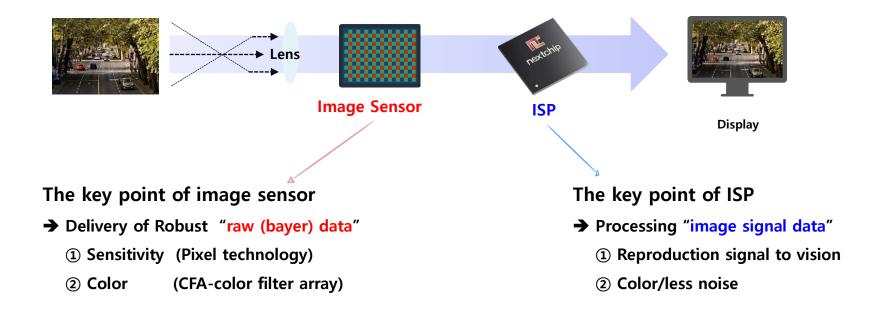
Chapter 1: What is the Difference? Human Vision vs. Machine Vision

Chapter 2: The Image Tuning Challenges for Human Vision

Chapter 3: The Image Tuning Challenges for Machine Vision

Human Vision vs. Machine Vision

• We asked this question to ChatGPT... It gave this image as an answer!



Do you feel the same way?

Image Tuning Needed for Both Types of Vision

Image Signal Processing Optimization for Object Detection

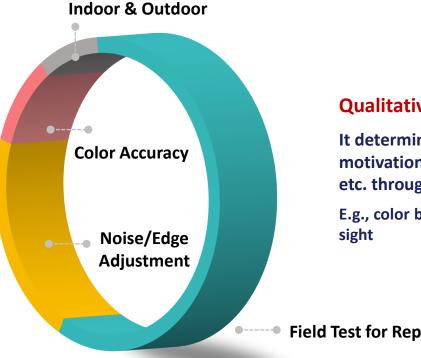
Chapter 1: What is the Difference? Human Vision vs. Machine Vision

Chapter 2: The Image Tuning Challenges for Human Vision

Chapter 3: The Image Tuning Challenges for Machine Vision

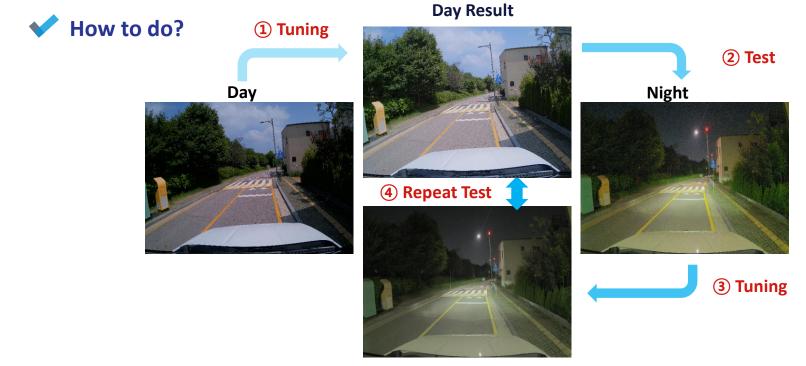
What is the challenge?

Make the image as similar as possible to one seen through a human eye


What is the key factor to tune for human vision?

- Color reproduction
- Lower noise level
- Brightness/edge/HDR (high dynamic range), etc.

Tuning under various environment, e.g., day & night

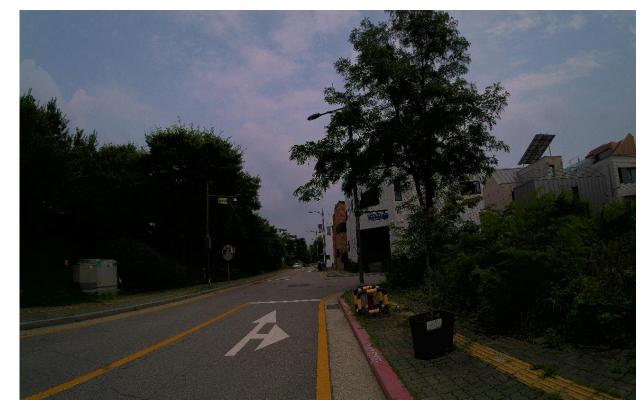

Qualitative TEST

It determines the user's motivation, comments, feeling, etc. throughout the test process.

E.g., color balance and bright in a

Field Test for Repeat

Night Result



DAY

• Generally dark

Problem

- Too strong color
- Too strong edge level

DAY

- Tuning#1
- Brightness
- HDR & Contrast
- GCE
- (global contrast enhancement)

DAY

- Tuning#2
- Color (hue, saturation)
- Color suppression

Final tuned image

NIGHT Problem

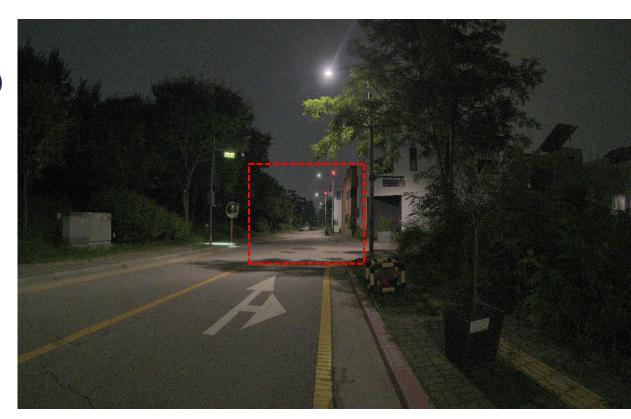
- Generally dark
- Too strong color
- Too strong edge level

NIGHT

► Tuning#1

- Brightness
- HDR & Contrast
- GCE

(global contrast enhancement)



NIGHT Tuning#2

- Color (hue, saturation)
- Color suppress

Final tuned image

Image Signal Processing Optimization for Object Detection

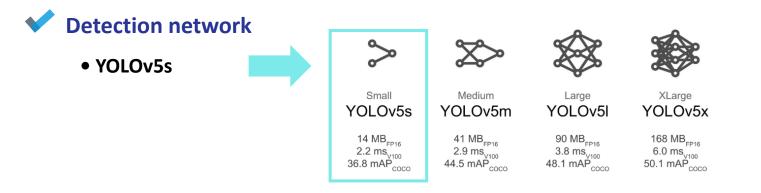
Chapter 1: What is the Difference? Human Vision vs. Machine Vision

Chapter 2: The Image Tuning Challenges for Human Vision

Chapter 3: The Image Tuning Challenges for Machine Vision

Vhat is the challenge?

• Higher detection rate is needed


Methods to increase detection rate such as:

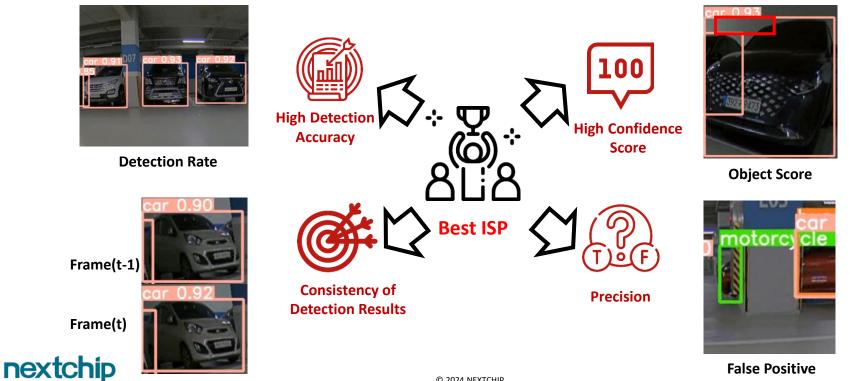
- Retraining
- Changing training method
- Changing field of view and resolution
- Image tuning, etc.

Measure Factors for Test

- Location : Pangyo, Korea
- Scene : Sunny, daytime & nighttime, rearview fisheye 190°
- Training image resolution : 640x360 / training images : 12,732

Test Dataset & Tuning

- Quantitative experiments: Stationary object + Ground Truth
- Qualitative experiments: Driving scene



- Brightness level: Auto exposure (AE)
- Edge sharpness level: Edge enhancement (EDGE)
- Noise level: Noise reduction (NR)

Quantitative Experiments – Metric

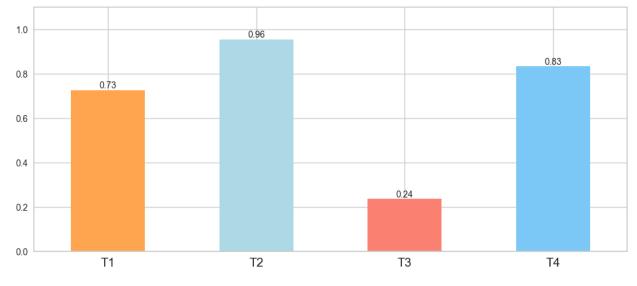
Metrics of best ISP for object detection

© 2024 NEXTCHIP

Quantitative Experiments – ISP Tuning & Test Dataset

- 4 different ISP settings for the same scene
- About 3200 frames for each tuning point

ISP tuning


- Brightness level: Auto exposure (AE)
- Edge sharpness level: Edge enhancement (EDGE)
- Noise level: Noise reduction (NR)

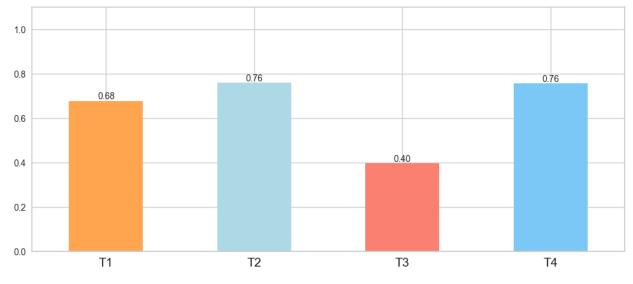
Quantitative Experiments – Detection Accuracy

• An indicator of recognition accuracy for each tuning point

accuracy for each Tuning Point

nextchip

embedded

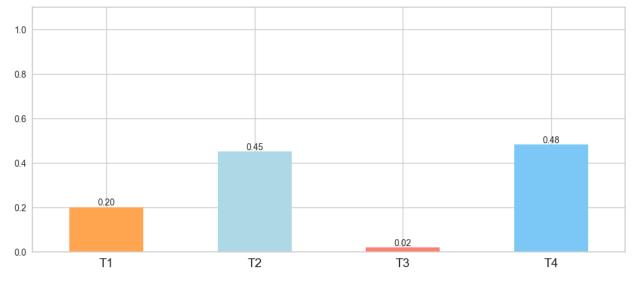

SUMMIT

Quantitative Experiments – Confidence Score

✓ High confidence score

• A score which represents likelihood that the bounding box contains an object

confidence for each Tuning Point


nextchip

© 2024 NEXTCHIP

Quantitative Experiments – Detection Consistency

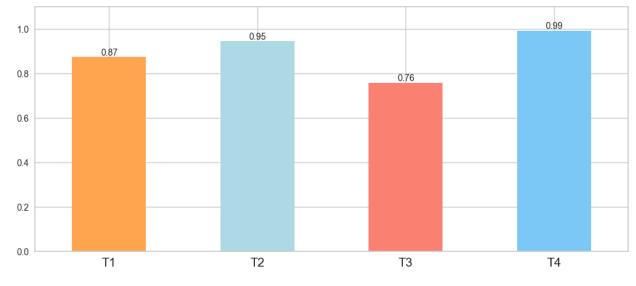
• An indicator of whether the same object is consistently recognized

consistency for each Tuning Point

nextchip

© 2024 NEXTCHIP

embedded


SUMMIT

Quantitative Experiments – Precision

Precision

• An indicator of recognition precision

precision for each Tuning Point

Quantitative Experiments – Result

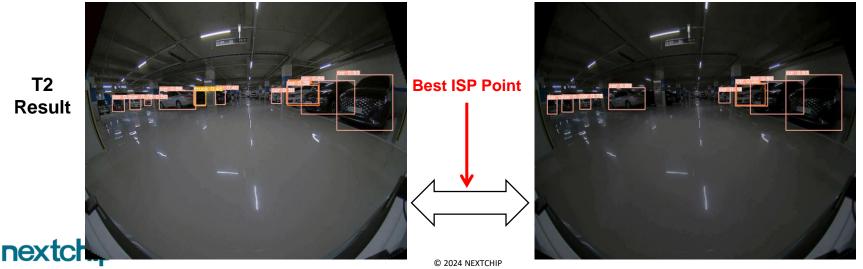
• For all metrics, the higher the better

total_score for each Tuning Point

nextchip

© 2024 NEXTCHIP

Quantitative Experiments - Conclusion


T4

Result

30

- EDGE has the greatest impact on detection performance
 - 1. Too many EDGE worse detection performance
 - 2. More EDGE

- More false detections
- Darker image Reduced false detection rate and accuracy
- Need to fine the best ISP setting value between T2 and T4

Qualitative Experiments – Evaluation Methods

- Estimate the false detection rate
- Counting false positives (FP) for period in which false detection occurs in all tuning points

T1 : Original Setting

T5 : Edge Sharpness Off + Bright Up

T6 : Edge Sharpness Off + Bright Up + NR Up

embedded

SUMMIT

T7 : Edge Sharpness Off + Bright Down

T8 : Edge Sharpness Off + Bright Down + NR Up

© 2024 NEXTCHIP

Qualitative Experiments – Best ISP for Object Detection

Daytime test

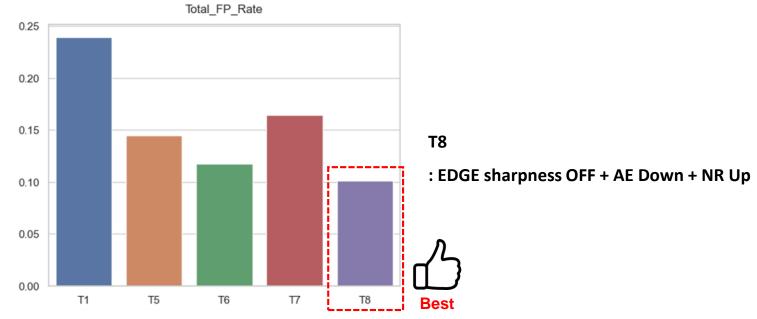
• Additional 5 ISP settings for the same driving path

T1 : Original Setting

T5 : Edge Sharpness Off + Bright Up

T8 : Edge Sharpness Off + Bright Down + NR Up

T7 : Edge Sharpness Off + Bright Down



embedded

SUMMIT

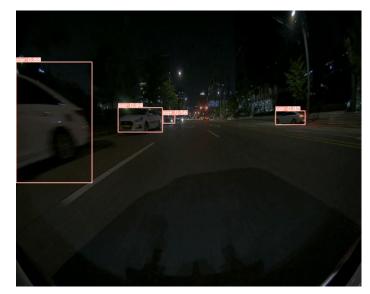
Qualitative Experiments – Best ISP for Object Detection

nextchip

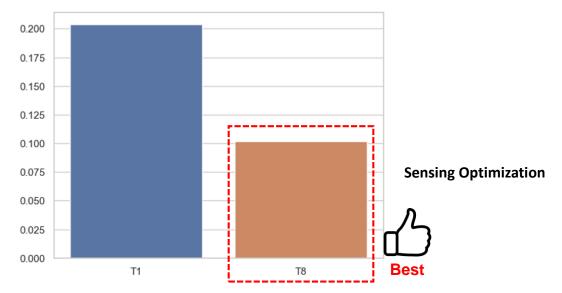
embedded

SUMMIT

Qualitative Experiments – Best ISP for Object Detection



Nighttime test
2 ISP settings are applied for same driving path


T1 : Viewing Optimization Tuning

T8: Edge Sharpness Off + AE Down + NR Up

Qualitative Experiments – Best ISP for Object Detection

False Detection per Image

nextchip

embedded

SUMMIT

Quantitative Experiments – Conclusion

embedded VISION SUMMIT

- Qualitatively, the detection rates are similar at all tuning points
- Datasets1 (Day time)
 - **1.** When noise level is high, reduces false detection rate
 - 2. In daytime, brightness does not seem to have a significant effect on false detection
- Datasets2 (Night time)
 - 1. T8 (Sensing) false detection rate is 0.1 better than T1 (viewing tuning)
 - 2. At nighttime, when brightness level is low, reduced false detection rate

Future Works

The problem with current experiments

• Since the performance is evaluated only for specific points,

there are some limitations to estimate the tendency value for each tuning factor.

Further experiments

• We keep working to analyze the trends while changing the AE (brightness), EDGE, and the noise level in optimal ISP tuning.

Resources

٠

ChatGPT <u>https://chatgpt.com/n</u>

• Test by Nextchip Internal Standard of Image Quantitative & Qualitative Test

2024 Embedded Vision Summit

- Booth#109
- Mr. Young-Jun Yoo
- gisado76@nextchip.com