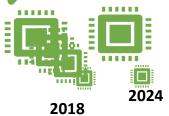


Maximize Your Al Compatibility with Flexible Pre- and Post-Processing

Jayson Bethurem

VP, Marketing and Business Development
Flex Logix


Changing Economics -> Chips Need to Evolve & Adapt

Skyrocketing Fab Costs

IC tapeout costs increasing significantly

Decreasing IC Selection

Forcing IC manufacturers to reduce # of chips/family, especially impacting smaller ICs

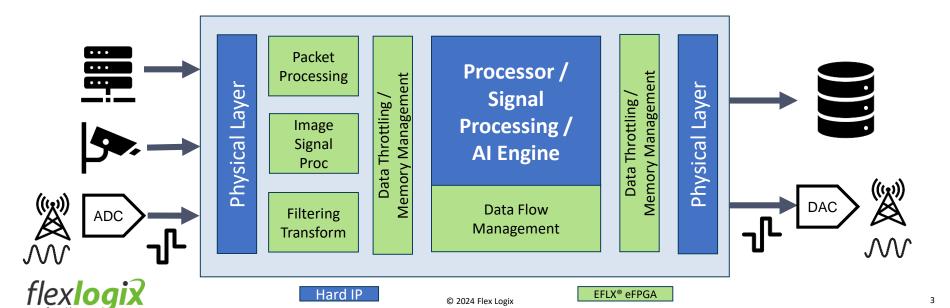
Increasing Complexity

All while design complexity increases and emerging technologies continually evolve

Adaptability Required

That provide reprogrammable algorithm acceleration that meets SWaP Goals

eFPGA Complements AI and Signal Processing



eFPGA Enables Greater Market Applicability and Differentiation

Data sources vary and require different preprocessing

Data requires management, formatting, throttling

For export, data needs to be packetized and buffered

Dynamic Nature of Data & Algorithms

Changing Protocols

Interfaces Specific Protocols

Distinct Applications Demands

Unique Regional Requirements

1G → 100G+

 $IPv4 \rightarrow HTTP/2$

USA vs EU

Evolving Algorithms

Inferencing Algorithms

Adaptive Filtering / Kalman

Compression Solutions

YOLO v1 \rightarrow v5

Scalar → Vector

LZW → Dictionary

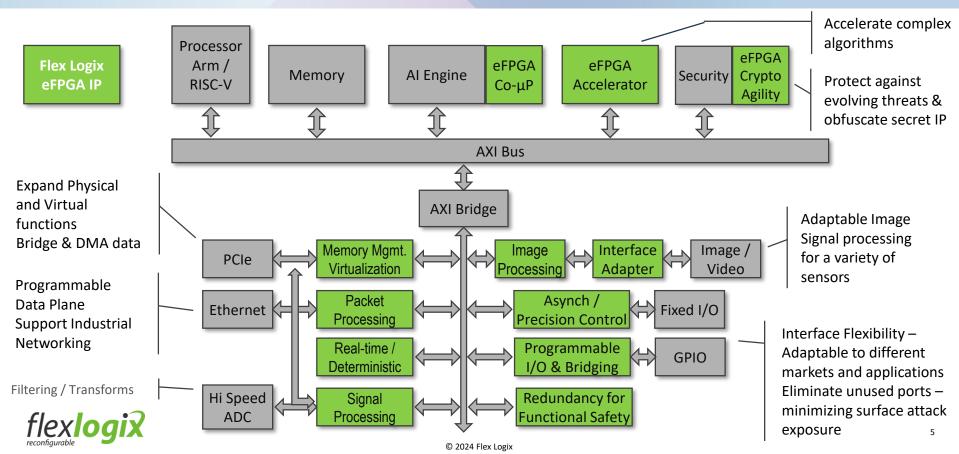
Emerging Threats

Evolving Threats / Aging Cryptography

Digital Signing / Authentication

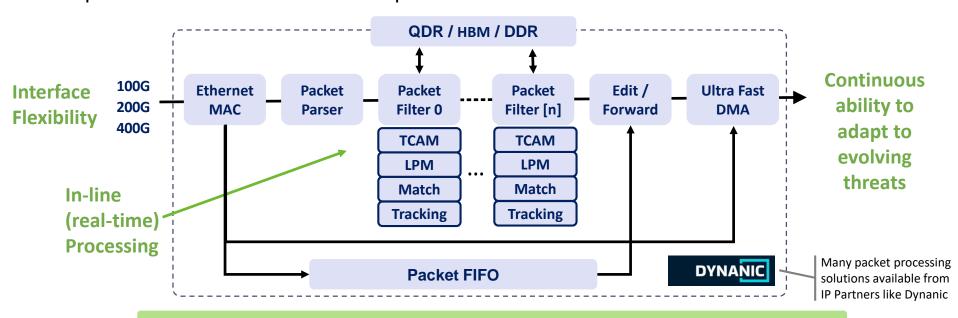
PQC Preparedness

AES128 → AES CGM


Hash vs. Matrix

NIST Competitions

Embedded FPGA Has Many Use Cases



Programmable Data Planes Enable SmartNIC Security

Servers mitigate many malicious attacks, such as Distributed Denial of Service, which require immediate detection & response

eFPGA is the perfect solution for SmartNICs and adaptable Packet Processing

Adaptable Image Signal Processing

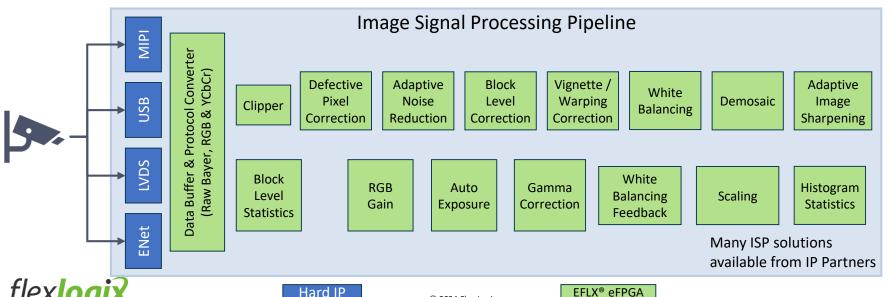
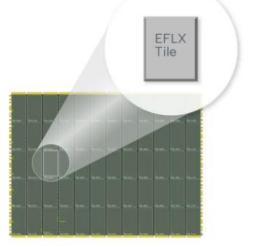


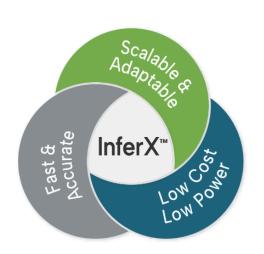
Image Signal Processing requirements can be dynamic for each application

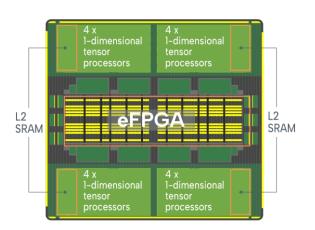
Video sources & formats can by vary by sensor

Resolution, frame rate and color depth dependent on application

Parallel pixel processing as well as multiple video channels

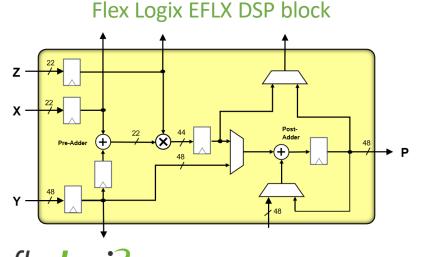


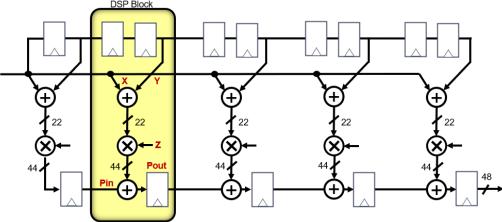

Flex Logix IP Available for Programmable Applications


Flex Logix IP available on advanced nodes TSMC 5nm and INTEL 18A

EFLX® eFPGA

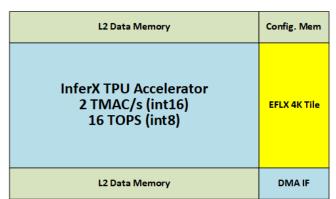
InferX™ DSP & AI




Signal Processing with Flex Logix EFLX DSP

- Flex Logix DSP Blocks → 22x22-bit signed real multiplier with 48-bit accumulator
 - Pre-adder & post-adder can perform 11- and 24-bit complex signed add/sub
 - Built in sign-detection logic and local carry chains for cascading into larger computation


10-tap symmetrical FIR filter using only 5 DSPs



InferX IP World Class DSP+AI Processing at Lowest \$/W

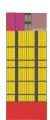
- Scalable number of tensor processors
- Tensor processors are configured dynamically
 - optimizes throughput and utilization
 - easy to adapt to new operators + workloads
- INT16 mode for DSP with INT40 accumulation
- INT8 mode for AI (with INT16 and BF16 options)
- High level programming
- Silicon proven

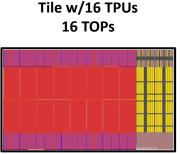
Hard IP

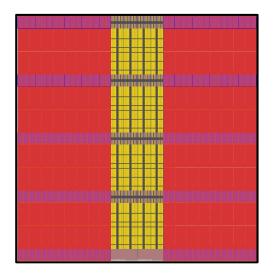
Soft IP

Memory IP

InferX Scalability to Meet a Wide Range of Workloads




Scalable DSP
Performance from
1 → 16 → 128
TPUs


InferX 128 TPU
Tile with 128 TPUs / 128 TOPS

InferX Tile with 1 TPU 1 TOP

InferX 16 TPU

InferX – High Performance, Multi-Operations, Low Latency

DSP

1GHz Operation	μInferX	1 InferX	8 InferX
Complex INT16 1K/2K/4K FFT	500 MS/s (Megasamples/sec)	8.5 GS/s (Gigasamples/sec)	68 GS/s (Gigasamples/sec)
Real INT16x16 FIR 256 taps	0.25 GS/s	4 GS/s	32 GS/s
Real INT16x16 FIR 4096 taps	16 MS/s	0.25 GS/s	2 GS/s
32x32 Complex INT16 Matrix Inversion	10K/sec	0.2M/sec	2.6M/sec
Area (rough est.)	~0.5 mm²	~3.6 mm²	~20 mm²

Vision Al

1GHz Operation	2 μInferX	1 InferX	8 InferX
YOLOv5s (640x640)	32 IPS	260 IPS	1400 IPS
YOLOv5L6 (1280x1280)	2 IPS	16 IPS	130 IPS
DETR 2020 Transformer (1024x1024)	3 IPS	26 IPS	195 IPS
Area (rough est.)	~0.6 mm²	~2.5 mm²	~20 mm²
LPDDR5	1	1	4

Area and performance benchmarks based on TSMC N5/N4 Nodes

eFPGA Solutions Hold the Key to Security

Cryptography solutions must be agile as decisions made today will be challenged

- Accelerates crypto algorithms w/ parallel processing in eFPGA
- Multiplex cryptography algorithms Saving die area
- Enhance digital signatures with additive solutions
- Protect "secret" or critical IP with obfuscation
- Mitigate ITAR concerns by adapting to regional requirements

Discrete FPGA Problems

Cloning, Overbuilding, Side Channel Attacks, Spoofing, Zero Trust (inc. supply chain), Bitstream Interception/Mutable

Minimize Attack Surface

Flexible interface capability eliminates unused access ports

Flex Logix Solution

Algorithm Acceleration

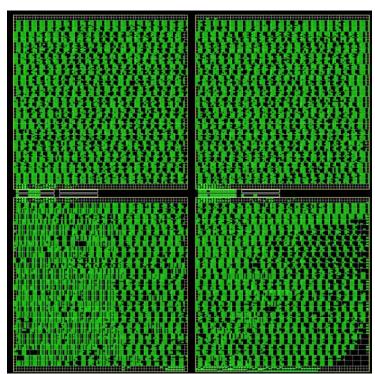
Many crypto algorithms can be accelerated in programmable logic

RNGs, PUF generation, KDF, ECC

Secure Solutions

Proven IP solutions from partners

Xiphera, Synopsys, CAST


PQC KYBER Encryption Module Flex Logix EFLX IP

ML-KEM Implementation Example

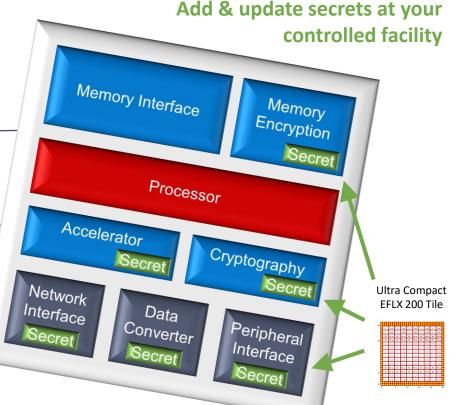
- IP fits compactly into 2x2 EFLX4K Tile Array with > 90% utilization
 - 10K LUTs | 5K Registers | 8 BRAMs
 - Can be implemented on any ASIC or SoC on any technology node
- Fast 225 MHz clock rate @ 64b \rightarrow 1.8 GB/s
 - Typical, TSMC 7nm

Flex Logix EFLX 4K Tiles

Secure Critical IP and Algorithms with Obfuscation

Reprogrammable IP in critical interfaces, algorithms and cryptography becomes the keystone to device security & operation

Memory Protection

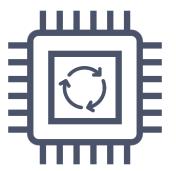

DMA Isolation | Dynamic Virtual Memory | Management | Encryption

Algorithm Confidentiality

Cryptography | Signal Processing IP | Proxy Re-Encryption | Homomorphic Encryption

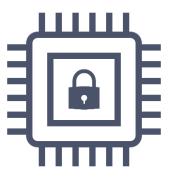
Interface Obscurity

Protocol Processing | Encoding & Decoding |
Encryption | Packet Filtering | Authentication
(signing)


Hybrid Solution = ASIC + FPGA = Best Solution

16

Solutions today are implemented in either FPGAs or ASICs/SoCs, but Hybrid offers Best of Both


FPGA

Flexible, Adaptable

High Cost & Power
Supply Chain
Cloneable/Mutable
Side Channel Attacks
Hard to Design

ASIC

Highest Performance Lowest Cost & Power

Lacks any HW adaptability or flexibility High Design Risk Only SW upgrades **HYBRID**

Adaptable Hardware
High Performance
Low Cost & Power
Lowers Design Risk

RTL Design Knowledge for highest performance

CONS PROS

Improve Your ASIC

Save Money @

FPGA Integration can reduce mask spins and save engineering cost by moving risky IP to programmable logic

Extend product life by adapting to new interfaces and protocols and supporting changing workloads

Periodic Bug Fixes

Enable updates to fix pesky bugs

Flexibility and adaptability to enable unique features vs competition

Meet regional specific protocol and security requirements

Lasting Security

Adapt to evolving security algorithms and threats

Lifecycle Test & Debug

Built in Logic Analyzer w/ run-time debug, bring up analysis, RMA analysis

Algorithm Improvement

Many IP continuously improve such as AI and data plane processing IP

Summary

Flex Logix eFPGA is the most proven eFPGA Technology on the market

- ➤ With over 25 working silicon designs
- > Best PPA in the industry
- > Best EDA tool chain with Synplify + eXpreso compiler
 - > Providing the best design and customer experience
- > Proven high-volume deployment with major IC manufacturers
- > IP available and proven in more fab nodes than any other supplier
 - TSMC and Intel IP Alliance Partners
- Silicon proven solutions for packet processing, security and SW acceleration

18

Learn More and Next Steps

19

- See us at booth #310 to see demos in action
- Visit Flex Logix Website @ https://flex-logix.com
- Contact our Sales team: <u>info@flex-logix.com</u>

- Test drive your IP with EFLX Compiler
 - Set up a Tools Demo
 - A free 45-day eval system is available for your use after the demo session
 - Get Performance, Power and Area estimates

See for yourself why Flex Logix is #1 for PPA

