

OpenCV for High-Performance, Low-Power Vision Applications on Snapdragon

Xin Zhong Director, Product Management, Qualcomm Technologies

Content

- Rich applications using OpenCV
- Accelerating OpenCV on Snapdragon[®] platforms
- Heterogenous computing delivers optimal performance on Snapdragon
- Leveraging CPU, DSP, GPU and EVA
- OpenCV modules we plan to optimize on Snapdragon
- Performance comparison
- One Example: accelerating optical flow using Snapdragon
- Roll-out schedule
- Benefits for developers on Snapdragon

OpenCV Library

OPENCV LIBRARY

70k Stars on Github

Extremely popular Github repo

github.com/opencv/opencv

Installs per month

Rivals Tensorflow in Python installs using **pip**

pypistats.org/packages/opencv-python

Embedded vision engineers

The most popular computer vision library among embedded vision engineers.

embedded-vision.com/academy/Tools AndProcessorsForCV_Jan2019_R1.pdf

Algorithms

The largest collection of my computer vision algorithms in a single library

github.com/opencv/opencv

Rich applications using OpenCV

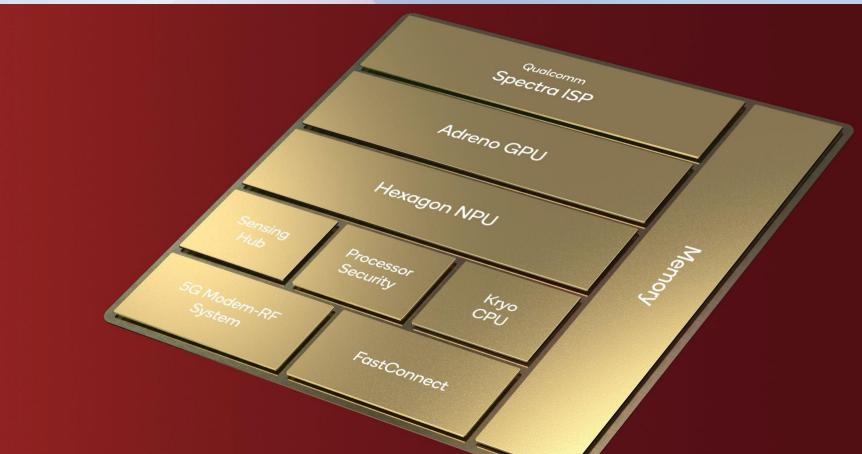
- Object detection and tracking
- Security and video surveillance
- Body and pose estimation
- Face detection, face recognition
- Camera calibration and depth
- Segmentation, background subtraction
- Computational photography
- Scene classification
- Robotics
- Smart City

OpenCV 4.9.0 modules

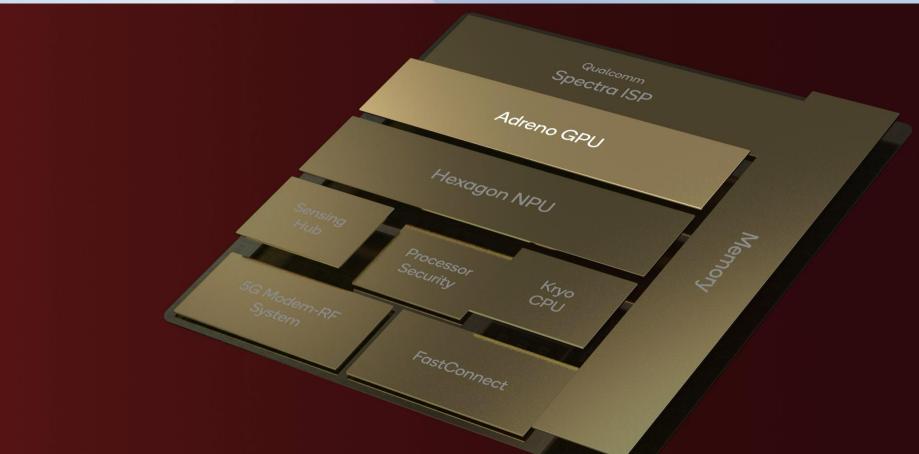
Main modules

Extra modules

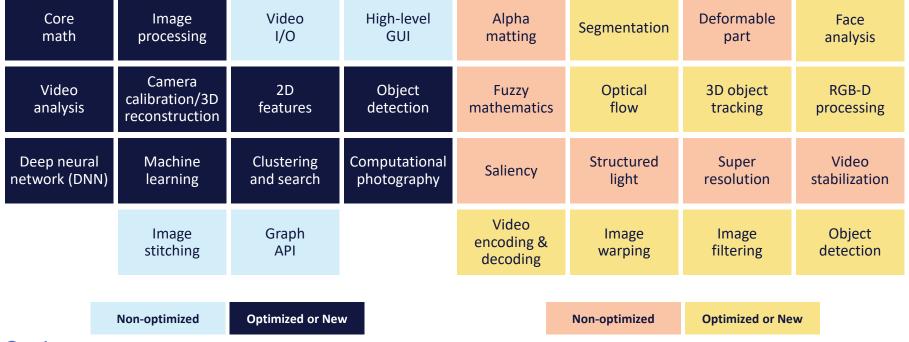
Core math	Image processing	Video I/O	High-level GUI	Alpha matting	Segmentation		Deformable part		Face analysis	
Video Analysis	Camera calibration/3D reconstruction	2D features	Object detection	Fuzzy mathematics		tical ow	3D object tracking		RGB-D processing	
Deep neural network (DNN)	Machine learning	Clustering and search	Computational photography	Saliency	Structured light		Super resolution			deo ization
	Image stitching	Graph API				lma filte	-			


Accelerating OpenCV on Snapdragon® platforms

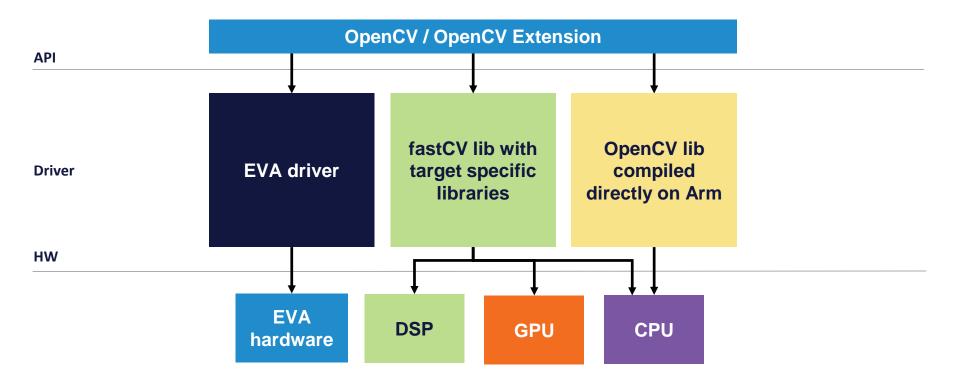
Math	Image processing	Image transform	Color conversion	© 2024 Qualcomm Te Feature detection	chnologies Inc. Descriptor matching	3D reconstruction	Motion tracking	Shape & drawing	6 Clustering
Scalar	lmage filters	Resizing	RGB-YCC	Corner detector	Gradient based	Camera pose estimation	LK optical flow	Convex fill	K-Means
Vector	Image integrate	Affine transform	Interleave — planar	Contour detector	NCC	Perspective transform fitting	BM optical flow	Find convex hull	
Matrix	Pyramid	Remap	RGB-HSV	Circle/line detector	MSER	Homography fitting	Mean shift	Draw contour	
Linear solvers	Stats	FFT Inv FFT	NV21-YUV	Good feature to track	SAD	Depth estimation	Cam shift		
		Rotate		KD Tree			SGM optical flow	Кеу	
		Grid						Software a	acceleration
		warping					Hardware acceleration		


Heterogenous computing delivers optimal performance

Heterogenous computing delivers optimal performance



OpenCV 4.9.0 modules we plan to optimize on Snapdragon[®] platforms


Main modules

Extra modules

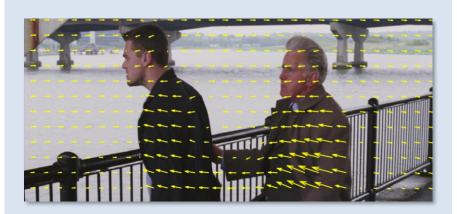
Leveraging fastCV and EVA hardware

Performance Comparison – summary

	OpenCV	Qualcomm optimized				
	Native implementation	Arm compatible	Neon optimized (Arm compatible)	DSP optimized		
Min Speed	1x	0.4x	0.5x	0.2x		
Max Speed	1x	34.2x	79x	53x		
Median Speed	1x	1.2x	2.3x	1.2x		
Average Speed	1x	9.0x	24x	11x		

All performance numbers measured on Snapdragon 8 Gen1

Statistics collected on a subset of OpenCV library that's accelerated on Snapdragon


Performance Comparison – selected functions

	OpenCV					
	Native implementation	Arm compatible	Neon optimized (Arm compatible)	DSP optimized	EVA hardware implementation	
Gaussian 3x3	1x	3.2x	6.6x	3.5x	-	
Gaussian 5x5	1x	25x	25.4x	24x	-	
Mean shift	1x	1.2x	3.6x	3.2x	-	
Cholesky solve	1x	9.0x	12.8x	4.1x	25x	
Bilinear downscale	1x	1.7x	1.7x	0.6x	5.5x	
Remap bilinear	1x	1.0x	1.1x	0.4x	11.8x	

One example: accelerating optical flow using Snapdragon

- SGM-based optical flow has been available in Snapdragon EVA hardware for generations
- MV quality is best-in-class
- Plan to add OpenCV extension API so developers can use it in similar ways of other Optical Flow functions
- Performance of EVA-based OF is about 5x faster than LK optical flow in OpenCV

Qualcom

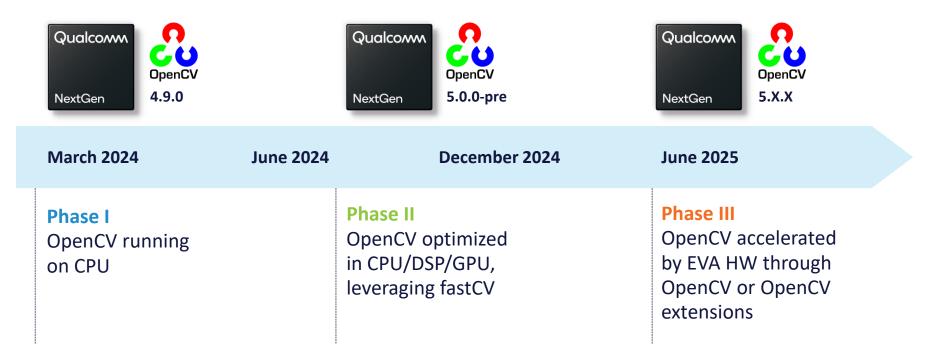
embedded

SUMMI

OpenCV 5.0

Hardware acceleration

- Better support for CPUs and GPUs
- Arm support and added RISC-V support
- Major revision to CPU HAL API
- \circ ~ Optimizations for low powered devices
- Substantially faster image processing


API overhaul

- C API will be deprecated
- C++17 as the minimum required version
- Revision of basic modules, such as Core, Imgproc, Features2D, Objdetect etc

- Deep Learning module
 - Major revision of DNN module with much better ONNX support
 - Support for major transformer-based models
- 3D module
 - Improved camera calibration including multicamera calibration.
 - Improved and extended 3D vision in a dedicated 3D module.
- Better documentation, improved samples and tutorials

OpenCV roll-out schedule

Qualconn

Benefits for Snapdragon developers

- Enabling OpenCV APIs on Snapdragon bridges the gap between CV developers and steep learning curve of Qualcomm Technologies' complex computing platform
- Easily accessible through OpenCV and simple integration
- Large number of CV algorithms with extensive OpenCV documentation and acceleration
- Commonly used OpenCV functions are accelerated up to 79x using Snapdragon heterogeneous computing, including CPU, DSP and GPU
- Most critical CV functions are directly accelerated by EVA hardware, to achieve up to 4x power saving and up to 25x performance

Resources

OpenCV https://opencv.org

Qualcomm CV SDK

https://developer.qualcomm.com/software/qualcomm-computer-vision-sdk

Viso.ai https://viso.ai/computer-vision

Thank you!

