

Addressing Tomorrow's Sensor Fusion and Processing Needs with Cadence's Newest Processors

Amol Borkar Product Marketing Director Cadence Design Systems

Major Market Trends

- The number of sensors feeding data is increasing
- Combination of vision, radar, lidar, and Time-of-Flight (ToF) in use
- Automotive is a good example of a large number of sensors per vehicle

The Path to Autonomy (Growing Number of Sensors)

embedded

Automotive Market Trends and Segmentation

Customers decide on platforms: Same basic architecture for different segments

Source: IBS Aug 2022

cādence°

© 2024 Cadence Design Systems

Major Automotive Market Trends

Evolution of the 4D Imaging Radar

Legacy Radar			
2D Radar	3D Radar	4D Radar	4D Imaging Radar
Azimuth (Horizontal Angular Information), Relative velocity (Doppler)			
	Range (Relative Distance)	Range (Relative Distance), 60-77 GHz Elevation (Vertical Angular information)	
			Brings richness of data, Higher field of view Higher angular resolution
			Camera-level 3D information

AI Inference Trend

- Al workloads are changing rapidly
- SoCs have lengthy design/development cycles
- Silicon designed today, needs to stay relevant two or more years from now

Need for future readiness in a rapidly evolving world of AI

Need For Sensor Fusion?

- What is sensor fusion?
 - Combine information from multiple sensors
 - E.g., left eye and right eye
- How does it help?
 - Redundancy: If one fails other works
 - Better quality: Error compensation and seeing more
- Utilize each sensor's strength and minimize their weakness
- Leverage classical approaches + AI for the best combination!

Sensor Fusion Examples

Typical Perception System

- So many sensors feeding data
- So many different processing blocks
- Need for heterogeneous compute:
 - Different architectures? Or common architectures
 - Scalability issue
 - Code reuse

Racing Towards Central Compute

- Majority of compute will come to the central compute block
- Central SoC will be a critical component for computing
- Technology nodes are shrinking but manufacturing costs are going up
- Scalability of processing unit/compute unit/IP will be necessary to reduce costs
 - Can I get more out of my IPs?
- Common architecture helps scale performance
 - One IP can process multiple input modalities (camera, radar, lidar, etc.)
 - Increase performance by adding more instances or multicore
- Cadence has the answer for you

Multiple Different Compute Units

Multiple Instances of similar Compute Units

Future

Tensilica Vision 341/331 DSP IP: Vision/Radar/AI

- New 512b and 1024b SIMD DSPs to address vision, radar, lidar, AI, and sensor fusion needs
- Combining the proven Tensilica[®] ConnX and Vision ISAs to deliver the best PPA for high-end multi-sensor processing
- Everything of Tensilica[®] Vision Q7 and Vision Q8 plus more!
- Key improvements over previous Tensilica Vision DSPs:
 - More datatypes: BFloat16, Complex floating point
 - CV filter improvements: 1D filters up to 2X better and NMS up to 2.5X better
 - New ISA to support fixed and floating point-based
 - Fixed point and floating point support for radar operations, FFT, etc., and up to 6x performance improvement
 - Improvements to neural network quantization and depthwise separable convolution performance
- Same libraries, software, ecosystem, and backward code compatibility
- Automotive grade and ASIL-certified IP $c\,\bar{a}\,d\,e\,n\,c\,e^\circ$

Vision 4DR Accelerator

- Accelerates 2D and 1D Fast Fourier Transform (FFT) commonly used in radar processing
- 16/24-bit fixed-point processing
- AXI-based IP with multiple DMA (128/256-bit) for fast data movement
- System software to work as FFT offload engine for Vision 331/341
- ISO 26262 ready for automotive market

Compared to a Vision 341 DSP: **4X** greater performance **6X** greater performance/area

Sensor Fusion Hub for Automotive

Sensor Fusion: Vision + Radar + LiDAR

Single DSP capable of processing multi sensor work loads saves area, power and increases performance + efficiency on an SOC

Cadence Tensilica: Comprehensive Software Solutions

E c s y s t e m

Al Product Announcement – September 13, 2023

Cadence[®] Neo[™] Neural Processing Units (NPUs)

- Target broad range of on-device and edge AI applications from smart speakers to autonomous driving
- Deliver wide range of AI performance in a low-energy footprint
- Efficiently offload AI inferencing from any host processor

Cadence NeuroWeave[™] Software Development Kit (SDK)

- Provides unified support across Cadence AI and Tensilica IP products
- Streamlines product development and enables an easy migration as design requirements evolve

embedded

SUMMIT

cādence°

© 2024 Cadence Design Systems

Putting It All Together

Summary

Automotive Market

• Automotive SoC architectures driven by software-defined vehicles, large number of diverse sensors, and higher throughput

Tensilica[®] Vision 331 DSP and Vision 341 DSP: single DSP for sensor fusion

- A single DSP eliminates the need for multiple DSPs for different sensors: camera, radar
- Both DSPs come with large software ecosystems; existing vision and radar software, vision, and radar library
- Enable fast TTM with the same SIMD and VLIW architecture and instruction set used by their highly successful Vision DSP predecessors

Vision 4DR Accelerator: Hardware accelerator for growing 4D imaging radar

- When paired with the new DSPs for 4D imaging radar applications, the Vision 4DR accelerator offers:
 - Greater <u>performance</u> and performance/area <u>advantage</u> compared to a DSP alone

Resources

- <u>The Role of Centralized Storage in the Emerging</u> <u>Zonal Automotive Architecture</u>
- <u>Multi-Modal Sensor Fusion-Based Deep Neural</u> <u>Network for End-to-End Autonomous Driving With</u> <u>Scene Understanding</u>

2024 Embedded Vision Summit

 Talk: SLAM for Embedded Systems: An introduction and its challenges May 23rd, 4:50 pm

Cadence Booth
#518 Exhibition Hall