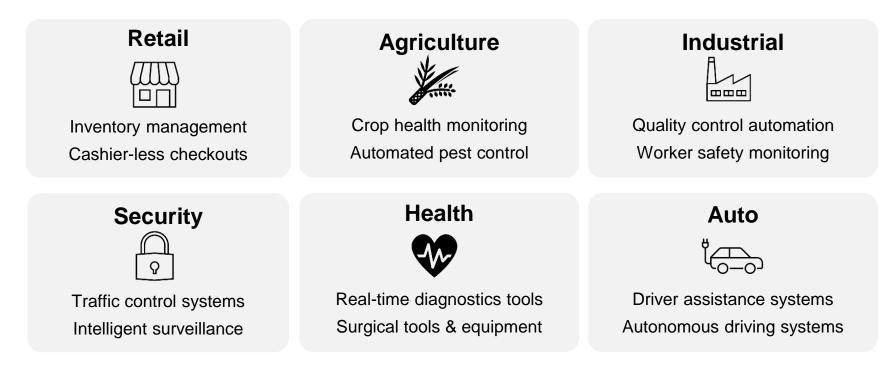
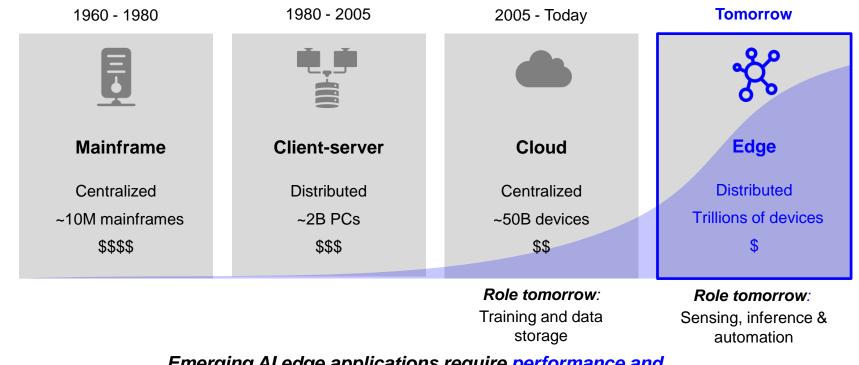

How Axelera AI Uses Digital Compute-in-Memory to Deliver Fast and Energy-Efficient Computer Vision

Bram Verhoef Head of Machine Learning & Co-Founder Axelera Al

Compute and Intelligence at Different Layers



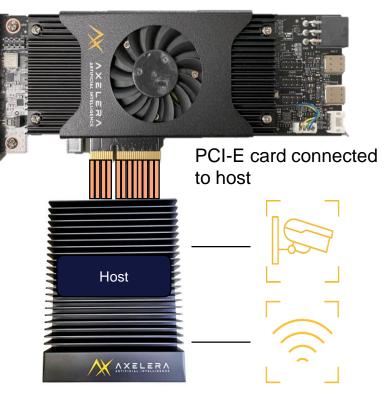
New AI Applications Are Emerging at the Edge



Al Is Moving From the Cloud to the Edge

Emerging AI edge applications require performance and

accuracy, energy efficiency, and low price


Fast, Accurate, Energy-Efficient, and Cost-Effective AI Inference With Digital Compute-In-Memory (D-IMC)

Metis - AI Platform

- Al edge inference accelerator
 - M.2 module or PCIe card
- Metis AIPU executes all tasks of an AI workload
 - Offload complete network(s)
 - Not just individual layers
 - Easy-to-use software stack
 - Voyager SDK combining compilation and quantization flow

Large on-chip SRAM capacity

AI-Core powered by D-IMC

PCIe 3.0 4x link to host

- 52.4 TOPS @ INT8 (209.6 TOPS aggregate)
- 15 TOPS/W energy efficiency

Metis AI Processing Unit (AIPU)

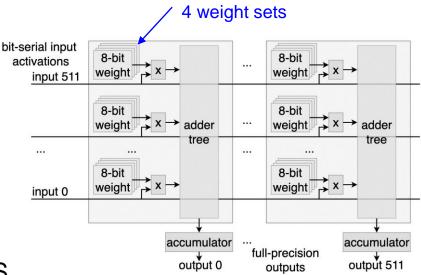
Quad-core System-on-Chip

RISC-V controlled

Security

LPDDR4x

RISC-V System ControllerAI CoreAI CoreAI CoreAI
CoreAI CorePCIe 3.0
(x4)LPDDR4x



Digital In-Memory Computing (D-IMC)

SRAM-based D-IMC

- Interleaved weight-storage and compute units in an extremely dense fashion
- Immune to noise and memory non-idealities affecting analog IMC precision
- INT8 activations / weights, with INT32 accumulation to maintain full precision
- Technology commensurate with CMOS scaling to low lithography nodes

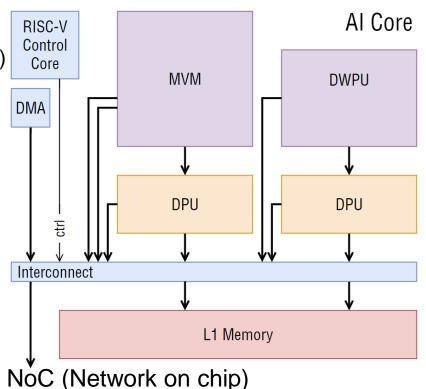
D-IMC Differentiating Improvements

- 1. Stores multiple weight sets in computational memory
 - Enhances IMC storage density
 - Allows accumulation up to 16k inputs
 - Enables simultaneous processing and weight reloading
- 2. Activity gating and clock gating
 - · Maintains high energy efficiency at low utilization
- 3. Ensures full-precision accumulation
 - Negligible accuracy loss compared to FP32
 - Use of post-training quantization; no need for retraining

VXELERV
ARTIFICIAL INTELLIGENCE

T	i	i. I	i s si s		No.24	10.0		The second	i s all		
	CM)	E.		E,	íHg -		- - - H				B, Marriel
STATUTE AND ADDRESS OF			-00					10.00	-10-		048-57
			النهز	Γ,	Hq. C		- 24				r, Harad
						북동					
	1.41			Ľ,	ne-		- 44	e 👬			l'indeced
				- 3		36		C			
الهو والطيامة الم				٢,	فيعين						, we so
					MOZ-C MACCO				ET E		19 Mar 2 1
					nu <u>-</u> -	213	<u>, sdyl</u>				l'interal
				1 - C							
The state of the second se				5,	Mgzd		- - 1 1		ا يشد ا		546-47
				F.							
				Ε,	HQ.	ЦĿ.			n en		<u>R</u> , merri (
			-m						-10-		V MU
			F AT						F T		
				F.							
					MQ						1, nu
					ugsé		S . 14				<u>, Hr 1</u>
	0 - 0 - 0 - 0										
				Ľ.	<u>indes</u>	214	<u> (1997)</u>				12 mores
1752-240 AT				F.	Hque			Ĩ			G HC COL
				p,	H .	SF.					
				Ε,		213		×0			M Musey
Les - Adals 4			-00						-10		방채를 문화
				5	Hr.C		- 1 4)				
											the statement of the
ic		je je		Ľ,					82	Ê.	M. M
				P)				*			이해한 문화
				1 A B	ur c			10 A 10			
					(NUL) (NUL)						
				Β,	(102.2			2			C/ MU
								1			N He - 1
					Hçirê						<u> нс. ст</u>

AI Core – Key Components

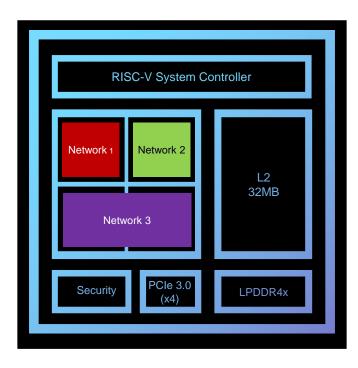

Matrix-Vector Multiplier (MVM)

- D-IMC based
- 512 inputs x 512 outputs (4 weight sets)
- INT8 inputs and weights
- Data Processing Unit (DPU)
 - Element-wise vector operations
 - Apply activation functions

Depth-Wise Processing Unit (DWPU)

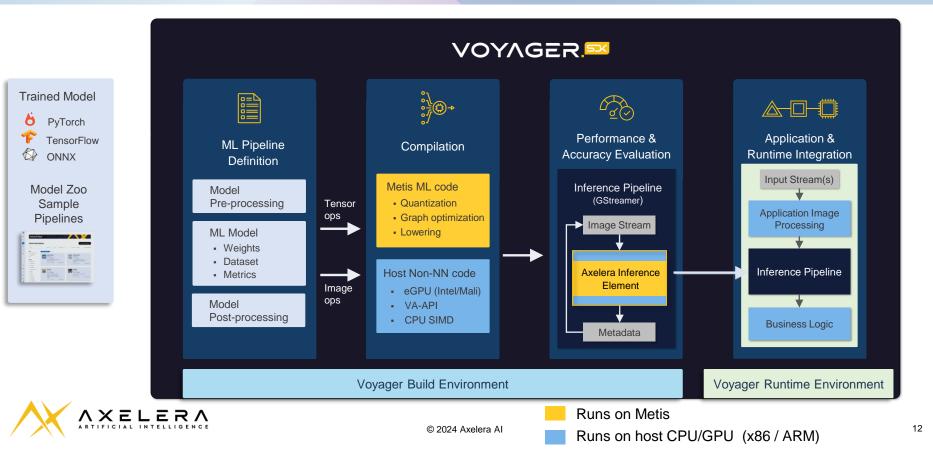
- Depth-wise convolution
- Pooling and Up-sampling
- 4 MiByte L1 SRAM
- RISC-V control core

Al Core – Deployment Scenarios



A single Al core

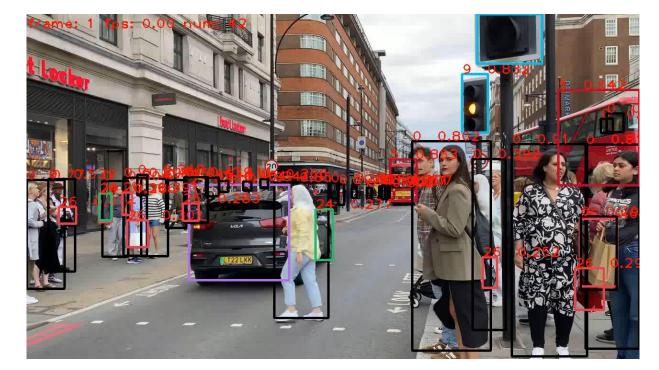
- Can execute all layers of a neural network
- Eliminates need for external interactions
- MVM


Flexibile deployment of multiple Al cores

- Manage different neural networks independently
 - In multi-network applications
- Jointly tackle a workload to enhance throughput
- Work on same neural network to reduce latency

Software Development Flow

Metis AIPU SoC Performance

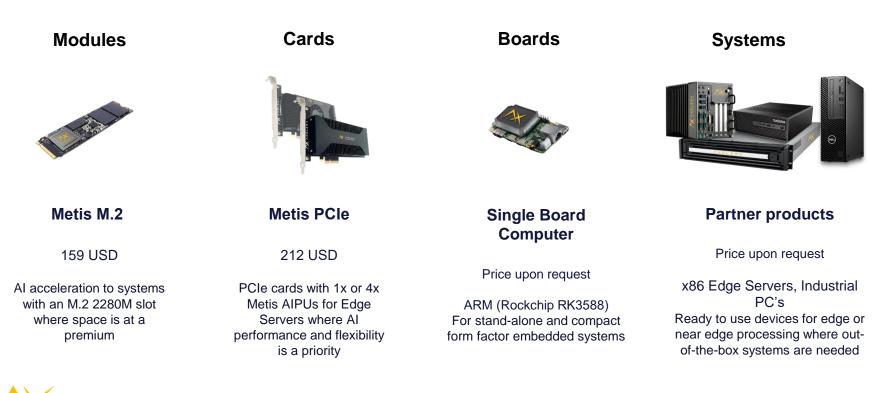

Table A: Metis Perfo	ormance. Bend	chmarks run using expe	erimental compiler.	Deviation fr FP32 accur	
Network	Resolution	Performance [FPS]	Accuracy@INT8	Chip Power [W]	=
ResNet-34	224 ×224	3199	73.2%* (-0.1)	7.1	
ResNet-50	224 ×224	2502	76.0%* (-0.1)	7.1	354 FPS/W
SSD-MobileNetV1	300 ×300	5901	25.5 MAP ⁺ (-0.3)	7.1	
YoloV5s-ReLU	640 ×640	497	33.3 MAP+ (-0.9)	5.4	92 FPS/W

* measured on ImageNet-1000 validation, + measured on COCO detection validation

YOLOv5s on Metis – Demo Preview

496 FPS YoloV5s inference @640x640

Running YoloV5s on 24 Streams on a Single Metis Chip



1 Metis Chip

Product Line-Up

Evaluation Kits to get stated

	Metis Evaluation Kits
Edge Host Systems	Dell Precision 3460XE SFF Core i7 LENOVO ThinkStation P360 ULTRA Core i5 Advantech ARC-3534B Core i5, Industrial PC Advantech MIC-770v3W Core i5, Industrial PC Firefly ITX-3588J, 8-core ARM, embedded
AI Acceleration	Axelera Metis PCIe, 214 TOPS (int8)
PCle	PCIe 3.0 (x4), HHHL size, 64 x 168 x 40 (mm)
ML frameworks	PyTorch / ONNX / TensorFlow (via ONNX) Axelera Voyager SDK
Neural Networks	Detection: YOLOv5s / m / I / YOLOv7 / SSD-MobileNetV2 Classification: Resnet-50 / MobileNetV2 / and more Pre-compiled optimized models and compiler supported
OS	Ubuntu Desktop v22.04, v20.04 (w/ Docker)

© 2024 Axelera Al

Summing Up: Powerful, Efficient and Cost-Effective Al

- Metis AIPU SoC is an innovative and advanced digital compute-in-memory inference solution for optimized AI computer vision applications
- Metis delivers <u>fast</u>, <u>energy-efficient</u>, <u>cost-effective</u> and <u>accurate</u> AI inference
- Voyager SDK supports deep learning out-of-the-box

<u>Metis evaluation kits</u> available now to get started

Resources

- https://www.axelera.ai
- Products: <u>https://www.axelera.ai/ai-acceleration-hardware-products</u>
- Metis: <u>https://www.axelera.ai/metis-aipu</u>
- Voyager SDK: <u>https://www.axelera.ai/ai-software</u>
- Evaluation Kits: <u>https://www.axelera.ai/metis-evaluation-kit</u>

Thank You!

Visit us at the Axelera booth (#510)!!!

