2024 embedded VISION SUMMIT

How to Run Audio and Vision AI Algorithms at Ultra-Low Power

Presenter:

Deepak Mital

Sr. Director, Architecture

Synaptics Incorporated

Osynaptics^{*}

Problem statement

- Many IoT applications do not require "continuous maximum" compute
- Continuous monitoring results in battery drain
- Examples:
 - Security camera: Turn on main processing for actual detection only when confirmed necessary
 - Human presence detection (HPD) and identification to turn device on: Run HPD detection and identification algorithm only when detected "potential" presence
 - Predictive maintenance: Enable advanced detection only when initial metrics are met
 - Shoplift prevention: Enable detailed analytics only when "potential" threat detected

Solution

- Multistage hardware: Capable of running Audio and Video AI algorithms
- Highly efficient AI models with different KPIs for each stage
- Tight orchestration of software to invoke each stage

High performance	ISP, encoders				
Cortex-M55 U55 NPU					
	Security	Power manageme	System memorie		
High efficiency				USB	
Cortex-M4 µNPU				/ serial / MIF	
Always-on domain		Pht	S	9	
Vision Al JPEG Audio VAD					
Sensing logic					
Deep sleep: GPIO (Wake), internal clock					
Reset					

Solution – Stage 1

- Ultra-low power: Microwatts hardware, always on
- Sound detection
- Image change detection
- Critical model requirements are for very few false negatives
 - False negatives will render device unresponsive

Solution – Stage 2

- Mid- to low power 10s of microwatts hardware, activated by stage 1 via software
- Al algorithms (example):
 - Wake-word detection
 - Human presence detection
- Critical model requirements are for very few false negatives and false positives
 - False negatives will render device unresponsive
- False positives will increase power consumption
 Synaptics

Solution – Stage 3

- High performance, activated by Stage 2 via software
- Al algorithms (example):
 - Person identification
 - Object detection
- Critical model requirements are for very high performance at low power
 - Slow run times will increase power consumption

AI models

- Different requirements for AI models at each stage
- Need AI models optimized for different KPIs: accuracy, performance, and size
- NAS-based model generation architecture where the models are purpose built for the constrained silicon
- Primary factors affecting inference KPI
 - Model architecture design
 - Model quantization
- Approach: Jointly optimize model architecture and quantization under memory constraints

Multi-precision NAS search range for classification

- Resolution [28x28 32x32]
- Kernel size [3x3, 5x5, 7x7]
- Depth [2, 3, 4]
- Width (channel expansion factor) [2, 3, 4]
- **Mixed-precision** quantization parameters [4 bit, 6 bit, 8 bit]

airplane	a series
automobile	÷
bird	No
cat	2.2
deer	L.
dog	37
frog	-
horse	-
ship	
truck	

embedded

SUMMIT

CIFAR-10 classification – Mixed vs 8- or 4-bit precision

Osynaptics

CIFAR-10 classification comparison

Osynaptics

© 2024 Synaptics Inc

Object detection dataset

- Resolution [320x240 640x480]
- Kernel size [3x3, 5x5, 7x7]
- Depth [2, 3, 4]
- Width (channel expansion factor) [2, 3, 4]
- **Mixed-precision** quantization parameters [4 bit, 6 bit, 8 bit]

COCO person detection – Mixed vs 8- or 4-bit precision

Osynaptics

© 2024 Synaptics Inc

COCO person detection comparison

Synaptics

© 2024 Synaptics Inc

Segmentation run on Stage 3

- Model development stage KPI:
 - COCO Instance Mask mAP: 0.636
 - Latency: 92.19 ms
 - Resolution: 480x640 (VGA)
 - Weights: 1.57 M parameters
- Model run on hardware:
 - Inference time: 96 ms
 - Total frame time: 120 ms

- Building full applications running at ultra-low power requires high levels of integration of hardware and software
- Multiple levels of processing is needed to wake up silicon components as needed
 - Stage 2 and Stage 3 come out of deep sleep based on results from previous stage
- The low-power orchestration demands tight software integration
- Each stage requires AI models with different KPIs on accuracy, model size, and speed
 - Need to have NAS-based model generation/training software to enable the complete solution
- Solution enables battery-powered devices that are AI capable and can run for many months/years

Resources

Synaptics Astra embedded processors https://www.synaptics.com/products/embedded-processors

Synaptics Astra evaluation Kit https://synacsm.atlassian.net/servicedesk/customer/portal/543/grou p/563/create/6387

Synaptics Astra software <u>https://github.com/synaptics-astra</u>