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• Challenges in current NPUs (Neural Processing Units)
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• Increase need for DSP like ops but DSP cannot be a fallback
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• Designing a flexible architecture

• Conclusion

• Q/A
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Traditional NNs and Hardware 



Traditional CNN: Mainly MAC dominated
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Transformers: Can be heavy on DSP-like compute
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Every data transfer between NPU block 
and CPU-DSP decreases performance 
and adds power

NPU operations (matrix, pooling, 
activation) 

Classic Algorithm & Control Ops
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Non-NPU ops are here to stay
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• SWIN network requires ~77% of the workload to be executed 
on a programmable device

“When a SWIN network is executed on an AI computational 
block that includes an AI hardware accelerator designed for 
an older CNN architecture, only ~23% of the workload might 
run on the AI hardware accelerator’s fixed architecture. In 
this one instance.”

Cadence says:

https://www.cadence.com/en_US/home/resources
/white-papers/why-a-dsp-is-indispensable-in-the-
new-world-of-ai-wp.html
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• Reshape
• Transpose
• Shifted 

window 
• Patch 

creation 
• Embeddings 

lookup
• …

• Softmax
• Layer norm
• Group norm 
• Instance norm
• Pixel Co-relation
• Positional encodings
• 2 input matmuls
• Look up tables
• …

• NMS
• ROIAlign
• Noise reduction
• FFT/RFFT
• Equation solver
• Mean subtract
• …

Data Transformations Inference Pre/Post Processing

Non-NPU ops are here to stay
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• Floating-point operations are 
getting more common during 
inference and can take a large 
part of compute

• Future designs would have 
multiple DSP cores, CPUs, AI 
accelerators, vision accelerators 
…

Where are we headed?
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Back to basics: Float32 vs Fixed Point



Float32 representation
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<23bits><8bits>1

Mantissa(fraction)ExponentSign

Float32

−1𝑠 ∗ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ∗ 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

• Range: refers to the span of values that can be represented. 
Exponent provides the dynamic range.

• Precision: refers to the ability of a format to distinguish between 
two close values. Mantissa provides the precision within a range. 

IEEE 754
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• Floating point offers

• Better dynamic range.

• Ease of development, as a user doesn’t need to adjust for 

precision and range

• But at a significant cost – power consumption!

What does floating point offer?
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• Known ranges of input and output: In all quantized neural nets the 
input and output ranges are well known. One can use a calibration 
dataset to identify all that.

• Fixed ranged ops:  Sin, cos, sigmoid, softmax, norm, etc. 

• Per operation range estimate: In almost all neural nets the data ranges 
across layer and operations can easily be gathered with a calibration 
data set

Do we really need floating point?
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• Dynamic fixed point : Based on the operations done internally one can analyze the 

math and change fixed point precision per calculation. 

Do we really need floating point?
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Fixed point32 representation
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<p-bits><31-p bits>1

Mantissa(fraction)Integer BitsSign

Fixed32<FracBits(p)>

• Range and Precision: can be controlled by the developer. Precision can be 
represented in for 31 fractional bits.

• Example: 
• FixedPoint32<24>.. Base int32 with 24 bits to represent fractional value
• FixedPoint16<11>.. Base int16 with 11 bits to represent fractional value
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• Quadric already supports 60+ networks (transformers, detector, 
segmentation, classifier …) within <1% top1 accuracy loss compared to 
floating-point models.

Fixed point accuracy numbers
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http://quadric.io/evs24
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Back to basics: Designing an architecture from lessons learned



Chimera GPNPU
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Chimera GPNPU

Scalable: 1 TOPS to 64 TOPS single core
Up to 512 TOPS Multi core

PE
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Existing solutions
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Offers very little programmability  

• Code partitioning/ programming 
complexity

• System complexity / power

• Accelerator brittleness

• No ability to modify hardware after 
tapeout

• Leads to lower-performance 
“fallback” onto the DSP or CPU

• Shortens market lifetime of SoC

❌

Hardwired 
Convolution & Matrix

Co-processor

Programmable
Scalar + Vector 

DSP

Shared Memory

AXI

Local 
Mem & 
Caches

Pooling & Activations
(selected, pre-wired)

Buffer Memory
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Chimera GPNPU — A code powered AI engine

20

100% of GPNPU is end user programmable

• Dramatically easier software programming 
model with ability to program in C++/python

• Simpler SOC architecture

• Long SoC lifespan – easy ML operator support

✅

Programmable Architecture

Memory
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Programming model
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Machine Learning Training Frameworks

ONNX Runtime / Relay

Chimera Graph Compiler (CGC)

User Application 
Code (C++)

Chimera LLVM C++ Compiler

Target Silicon 
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/ System C)
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C++

C++
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Instruction-based simulation gives detailed bandwidth, 
power, and performance insights​
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• Custom implementation of nodes/subgraphs

• e.g., NMS, proprietary layers, custom operators

Custom operator support
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Conclusions



• Floating-point unit can easily be replaced with fixed-point integer math equally well. 
Same accuracy with lower power & higher performance.

• Fixed operation units (ASICs) only work in niche applications. In today’s world with AI 
algorithms changing every 3 weeks, one needs a very flexible architecture which is easy 
to program. 

• Operations requiring non-mac compute are becoming very common. Having multiple 
DSP/special cores is not the right fallback....

Conclusions
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Need a unified architecture to handle all workloads…
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Q&A



About Quadric: http://quadric.io/evs24

Pure play Semiconductor IP Licensing

• Processor IP & Software Tools

Edge / device AI/ML Inference + DSP 
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HQ:  Silicon Valley – Burlingame CA

Total Venture Capital Raised: $48M

May-2023:  First IP delivery, DevStudio Online

Patents: 25 Granted

Successful silicon in 2021

Visit us at Booth: 717
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