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* Challenges in current NPUs (Neural Processing Units)
e Trends in neural networks
* Increase need for DSP like ops but DSP cannot be a fallback

e Back to basics
* Fixed point vs. floating point
e Designing a flexible architecture

* Conclusion
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Traditional NNs and Hardware
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Traditional CNN: Mainly MAC dominated
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B NPU Ops (matrix, pooling, activation)

B Classic Algorithm & Control Ops

CPU/DSP

Pooling & Activations
(selected, pre-wired)

Hardwired
Convolution & Matrix
Co-processor
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Transformers: Can be heavy on DSP-like compute VISIN
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B NPU operations (matrix, pooling,
activation)
B Classic Algorithm & Control Ops

Every data transfer between [\Id¥ block
and [@4¥BINY decreases performance

and adds power
Energy Cost of 3Zb data element
transfer from ALL/MAC to

Reg File I
LRM 2-3X
L2 MEM 70X
Off-chip DOR 225X
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* SWIN network requires ~77% of the workload to be executed
on a programmable device

Cadence says:

“When a SWIN network is executed on an Al computational
block that includes an Al hardware accelerator designed for
an older CNN architecture, only ~¥23% of the workload might
run on the Al hardware accelerator’s fixed architecture. In

this one instance.”

https://www.cadence.com/en_US/home/resources
/white-papers/why-a-dsp-is-indispensable-in-the-
new-world-of-ai-wp.html
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Non-NPU ops are here to stay VISIN
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Data Transformations Inference Pre/Post Processing

* Reshape e Softmax e NMS

* Transpose * Layer norm * ROIAlign

e Shifted * Group norm * Noise reduction
window * Instance norm * FFT/RFFT

e Patch * Pixel Co-relation * Equation solver
creation * Positional encodings * Mean subtract

 Embeddings e 2 input matmuls .
lookup * Look up tables
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Where are we headed?

* Floating-point operations are
getting more common during
inference and can take a large
part of compute

e Future designs would have
multiple DSP cores, CPUs, Al
accelerators, vision accelerators
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All special ‘

units added.
Now it is Jjust
a SW problem
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| AM NOT CODING
ON THAT SH**!
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Back to basics: Float32 vs Fixed Point
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Sign Exponent  Mantissa(fraction)

Float32 1 <8bits> <23bits>

IEEE 754

_ 15 * 2 exponent

* mantissa

* Range: refers to the span of values that can be represented.
Exponent provides the dynamic range.

* Precision: refers to the ability of a format to distinguish between
two close values. Mantissa provides the precision within a range.
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* Floating point offers
* Better dynamic range.

« Ease of development, as a user doesn’t need to adjust for
precision and range

« But at a significant cost — power consumption!

© Quadric 11
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Do we really need floating point? VISIN
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* Known ranges of input and output: In all quantized neural nets the
input and output ranges are well known. One can use a calibration
dataset to identify all that.

* Fixed ranged ops: Sin, cos, sigmoid, softmax, norm, etc.

* Per operation range estimate: In almost all neural nets the data ranges
across layer and operations can easily be gathered with a calibration
data set

© Quadric
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Do we really need floating point? VISI™N
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« Dynamic fixed point : Based on the operations done internally one can analyze the
math and change fixed point precision per calculation.
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Sign Integer Bits  Mantissa(fraction)

Fixed32<FracBits(p)> 4" <31-p bits> <p-bits>

* Range and Precision: can be controlled by the developer. Precision can be
represented in for 31 fractional bits.

* Example:
* FixedPoint32<24>.. Base int32 with 24 bits to represent fractional value
* FixedPoint16<11>.. Base int16 with 11 bits to represent fractional value

© Quadric
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e Quadric already supports 60+ networks (transformers, detector,
segmentation, classifier ...) within <1% top1 accuracy loss compared to
floating-point models.

http://quadric.io/evs24
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Back to basics: Designing an architecture from lessons learned
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Chimera GPNPU VISI[IN
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Neighbor

DMA Access

Processing Element

LRM - Local Register Memory 32 Entry Arch
(4KB SRAM) Reg File

| 32bit ALU
MASS ' (Full C++ Target)

- )
- )

Pipeline Control
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Chimera GPNPU VISI?N
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Existing solutions VISI?N
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Offers very little programmability

Pooling & Activations

(selected, pre-wired) * Code partitioning/ programming

Programmable complexity

Scalar + Vector .
* System complexity / power

Hardwired .
Convolution & Matrix * Accelerator brittleness

Co-processor °

No ability to modify hardware after
tapeout

* Leads to lower-performance
Buffer Memory “fallback” onto the DSP or CPU

* Shortens market lifetime of SoC

Shared Memory
=< o
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Chimera GPNPU — A code powered Al engine VISIN

SUMMIT

100% of GPNPU is end user programmable

Dramatically easier software programming
model with ability to program in C++/python

Simpler SOC architecture
Long SoC lifespan — easy ML operator support

20
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Programming model VISIN
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Machine Learning Training Frameworks -F' oo .
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Instruction-based simulation gives detailed bandwidth, ev”i%eijﬁﬁ A

power, and performance insights AiTIe
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* Custom implementation of nodes/subgraphs

* e.g., NMS, proprietary layers, custom operators

_—

< OcmWeightsShape>
CustomOperator(DdrInTensorShape: :ptrType ddrInPtrA,
DdroutTensorShape: :ptrType ddroutPtr) {

© Quadric 23
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* Floating-point unit can easily be replaced with fixed-point integer math equally well.
Same accuracy with lower power & higher performance.

* Fixed operation units (ASICs) only work in niche applications. In today’s world with Al
algorithms changing every 3 weeks, one needs a very flexible architecture which is easy
to program.

e QOperations requiring non-mac compute are becoming very common. Having multiple
DSP/special cores is not the right fallback....
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About Quadric: http://quadric.io/evs24 VISI'N
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Pure play Semiconductor IP Licensing Visit us at Booth: 717

 Processor IP & Software Tools

Edge / device AI/ML Inference + DSP
processing

HQ: Silicon Valley — Burlingame CA
Total Venture Capital Raised: $48M
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Successful silicon in 2021
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