
Fundamentals of Training AI
Models for Computer Vision
Applications

Amit Mate

Founder & CEO

GMAC Intelligence

• Vision AI Tasks

• Deep CNNs for Vision AI

• What is Training?

• Training vs Inferencing

• Types of Training

• Under the Hood – Model, Data, Process

Content

2© 2024 GMAC Intelligence

• Training Frameworks and Tools

• Training a CNN in Keras

• Training Caveats

• Transfer Learning and Fine-tuning

• Data Augmentation

• Conclusions

Vision AI Tasks

3© 2024 GMAC Intelligence

Tiger

Tiger sitting on
green grass

Classification

Segmentation

Object Detection

Caption Generation

Tiger

Deep CNNs for Vision AI

4© 2024 GMAC Intelligence

CNN parameters to be learned:
Convolution layer: kernels, bias
FC Layer: weights, bias
Normalization: mean, variance

Training CNNs:
CNNs learn these
features during training
process which is specific
to the vision ai task.

Power of deep CNNs:
Capability of learning
features directly from visual
data.

• What is training ?

o It is the process of using data to adjust the parameters of the model such that it can make accurate
predictions or inferences

• Why should we train ?

o To make the model useful/accurate for executing (inferencing) a specific vision ai task

• Where should we train?

o Usually* on a high-end server with GPUs or TPUs with high memory, storage and processing power

Training 3Ws — What? Why? Where?

5© 2024 GMAC Intelligence

* Smaller models can be trained on PCs with GPUs

Training vs Inferencing

6© 2024 GMAC Intelligence

TrainingDataset, CNN Trained CNN

InferencingLabels
Real-time data,

trained CNN

Inferencing

• Real-time, on edge devices *

• Memory, compute, storage limited

• Metrics: accuracy, latency

Training

• Offline, on high-end servers *

• Data limited

• Metrics: accuracy, generalization

* Edge training and server inferencing also feasible

• Supervised: Model is trained on labeled data with input-output pairs

• Unsupervised: Model is trained on unlabeled data without any predetermined output

• Semi-supervised: Model is trained on both labeled and unlabeled data

Training Methods

7© 2024 GMAC Intelligence

Perceptron Model

8© 2024 GMAC Intelligence

Inputs Weights Sum Non-linearity Output

y = f(w1x1 + w2x2 + ... + wnxn + b)
b

Data

9© 2024 GMAC Intelligence

X: (x1,x2) => inputs
Y: (red, blue) => labels
Dataset: (X,Y) n

x1

x2

x1

x2

Data

10© 2024 GMAC Intelligence

What is a good dataset ?

• Captures the underlying probability
distribution of the data in real-world

• Accurate labels

• Well partitioned (training, validation, test)
x1

x2

PDF

Dataset Partitions

11© 2024 GMAC Intelligence

Training Set: Mutually exclusive subset of data used directly for learning parameters of the model
during the training phase , typically 60-80% of the dataset, used for fitting model to the data.

Validation Set: Mutually exclusive subset of data used during learning phase for evaluation of the
learned parameters , typically 10-20% of the dataset, used to prevent overfitting of the model.

Test Set: Mutually exclusive subset of data used after training is completed, typically 10-20% of the
dataset, used for evaluation of the model on data which is not used for training the model

Learning

12© 2024 GMAC Intelligence

X: (x1,x2) => inputs
Y: (red = 0, blue =1) => labels
Dataset: (X,Y) n

Learning Goal – Figure out b, w1 & w2
such that for any data point (x1,x2),
model computes the label y accurately

x1

x2

Learning Algorithm

1. Assume random values for b, w1, w2
2. Iterate until Y predicted correctly for “most” X in Dataset

• Update (b,w1,w2)
3. Use learned weights (b ,w1,w2) to classify X accurately

After Training:
1*x1 + 1*x2 - 9 > 0

Model:
w1*x1 + w2*x2 - b > 0

x1

x2

w1

w2

y

b

Inputs Weights Weighted-Sum Non-linearity Output

Learning via Optimization

13© 2024 GMAC Intelligence

Empirical Loss or Objective Function

Gradient Descent Algorithm

Update

w

J(w)

Gradient

Initial Weight

J(w)min

Stochastic Gradient Descent (SGD)

14© 2024 GMAC Intelligence

Learning rate Global Minima hard to
converge on with a non-
convex loss function

Local Minima
causes undesirable
convergence,
suboptimal parameters

Estimate of true gradient
based on a batch “B” of random
samples

Key Parameters

15© 2024 GMAC Intelligence

Training Dataset Size: The total number of data points used to train the model

Epoch: One full pass through the entire training dataset to update model weights

Batch Size: A subset of data points used for a single update of the model weights

• Adaptive Moment Estimation (Adam)

o Adaptive learning rate based on the momentum of gradients

o Faster and more stable convergence

• Root Mean Square Propagation (RMSprop)

o Adaptive learning rate based on moving average of the squared
gradients

o Mitigates the problem of exploding or vanishing gradients

• Adagrad

o Adaptive learning rate based on historical gradient information

o Reduces the learning rate for frequently occurring parameters

Improvements on SGD

16© 2024 GMAC Intelligence

Animation from:
https://imgur.com/s25RsOr

https://imgur.com/s25RsOr

Improvements on SGD

17© 2024 GMAC Intelligence

Non-convex Loss Function Optimization Adam Update Rule Based on Moment “m”

v(t) = m*v(t-1) + (1 - m)*∂J(W)/ ∂ W

W(t) = W(t-1) - η * v(t)

SGD Update

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0

Nonlinearity Modelling

18© 2024 GMAC Intelligence

x1

x2

1. Non-linear relationships
between input X and output Y
needs multi-layer models and
non-linear activation
functions.

2. Multi-layer model with multiple
hidden layers for non-linear
arbitrary function modelling.
Multiple layers of weights need to
be learned for accurate prediction.

w1n w2n

3. Choose functions based on
problem type (binary or multi-
class classification, regression).
Needs experimentation.

Multilayer Perceptron Activation FunctionsNonlinearity

Under the Hood — Backpropagation

19© 2024 GMAC Intelligence

Error backpropagation using chain rule of
differentiation essential for learning
parameters of a deep network

w2 x

Training Resources for Beginners

20© 2024 GMAC Intelligence

MNIST

CIFAR-10

VOC-20

Training with Keras

21© 2024 GMAC Intelligence

Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

Build the model
model = keras.Sequential(

[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),

]
)

Train the model
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)

Evaluate the trained model
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

Training Caveats

22© 2024 GMAC Intelligence

Caveats:

• Number of training epochs/iterations, dataset
coverage, affects generalization and accuracy

• Learning rate, batch size, are important hyper-
parameters for convergence and accuracy

Mitigation:

• Hyper-parameter tuning and/or heuristics
• Data augmentation and synthetic data
• Adjust network architecture (depth, width) to

improve accuracy and convergence
• Regularization

Regularization

validation

training

Training Caveats — Regularization

23© 2024 GMAC Intelligence

x1

x2

Regularization Methods:

• Early termination

• L1/L2 (loss) regularization

• Dropout

• Batch normalization

Underfit

Overfit

Ideal

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0

L1/L2 Loss Regularization

24© 2024 GMAC Intelligence

Binary Cross Entropy Loss:

• L1 Regularization (sparsity, less complexity)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + λ ||w||1

• L2 Regularization (smooth, less sensitive parameters, computationally efficient training)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + (λ/2) ||w||2

Intuition: smaller values of “w” leads to better generalization, optimal λ for best fit (between overfitting

and underfitting)

Dropout and Batch Normalization

25© 2024 GMAC Intelligence

image source: primo.ai

Dropout Batch Normalization

Learned parameters: β, γ
Estimated parameters: μ , σ
Hyper parameter: Є

http://primo.ai/index.php?title=Dropout

• Transfer Learning: it is the process of taking a model that has been trained on a large,
comprehensive dataset for a particular task and then repurposing it for a second “unrelated” task
(e.g., transfer learning applied from pet segmentation to orthoscopic tissue segmentation)

Transfer Learning

26© 2024 GMAC Intelligence

• Significantly reduce training time and computational resources needed

• Especially useful when target task has limited labelled data

• Fine-tuning: it is the process of taking a model that has been trained on a large,

comprehensive dataset for a particular task and then tuning some layers to use it for a

second “related” task.

Fine-tuning

27© 2024 GMAC Intelligence

• Generally used to improve accuracy of a deployed model to handle slightly different inputs not seen
during training

• Data Augmentation: helps to improve the diversity/distribution of training dataset to match real-
world scenarios. Techniques include rotations, translations, flipping, scaling, and changes in
brightness or contrast for images. Improves generalization of the model, prevents overfitting and
makes models more robust.

Data Augmentation

28© 2024 GMAC Intelligence

• Trained deep CNNs can accomplish various vision AI tasks

• Key ingredients for training CNNs: dataset, learning algorithm, back-propagation

• A good dataset should be well-partitioned and represent the underlying distribution of data

• A good training algorithm is efficient in learning parameters from data

• Accuracy and generalization are KPIs of a well-trained network

• Leverage transfer-learning, heuristics and regularization to make training more efficient

• Keras, Tensorflow and Pytorch are good frameworks to start training

Conclusions

29© 2024 GMAC Intelligence

• Keras https://keras.io/

• Tensorflow https://www.tensorflow.org/

• Pytorch https://pytorch.org/

• Colab Online Training Servers https://colab.research.google.com/

• SOTA Vision Models https://paperswithcode.com/area/computer-vision

• MIT Deep Learning Course http://introtodeeplearning.com/

Further Resources

30© 2024 GMAC Intelligence

https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://colab.research.google.com/
https://paperswithcode.com/area/computer-vision
http://introtodeeplearning.com/

