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Vision AI Tasks
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Deep CNNs for Vision AI
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CNN parameters to be learned:
Convolution layer: kernels, bias
FC Layer: weights, bias
Normalization: mean, variance

Training CNNs:
CNNs learn these 
features during training 
process which is specific 
to the vision ai task.

Power of deep CNNs: 
Capability of learning 
features directly from visual 
data.



• What is training ?

o It is the process of using data to adjust the parameters of the model such that it can make accurate 
predictions or inferences

• Why should we train ?

o To make the model useful/accurate for executing (inferencing) a specific vision ai task

• Where should we train?

o Usually* on a high-end server with GPUs or TPUs with high memory, storage and processing power

Training 3Ws — What? Why? Where? 
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* Smaller models can be trained on PCs with GPUs



Training vs Inferencing
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TrainingDataset, CNN Trained CNN

InferencingLabels
Real-time data, 

trained CNN

Inferencing

• Real-time, on edge devices *

• Memory, compute, storage limited

• Metrics: accuracy, latency

Training

• Offline, on high-end servers *

• Data limited

• Metrics: accuracy, generalization 

* Edge training and server inferencing also feasible



• Supervised: Model is trained on labeled data with input-output pairs

• Unsupervised: Model is trained on unlabeled data without any predetermined output 

• Semi-supervised: Model is trained on both labeled and unlabeled data

Training Methods
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Perceptron Model
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Inputs           Weights                Sum         Non-linearity           Output

y = f(w1x1 + w2x2 + ... + wnxn + b) 
b



Data
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X: (x1,x2) => inputs
Y:  (red, blue) => labels
Dataset: (X,Y) n

x1

x2

x1

x2



Data
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What is a good dataset ? 

• Captures the underlying probability 
distribution of the data in real-world

• Accurate labels 

• Well partitioned (training, validation, test)
x1

x2

PDF



Dataset Partitions
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Training Set: Mutually exclusive subset of data used directly for learning parameters of the model 
during the training phase , typically 60-80% of the dataset, used for fitting model to the data.

Validation Set: Mutually exclusive subset of data used during learning phase for evaluation of the 
learned parameters , typically 10-20% of the dataset,  used to prevent overfitting of the model.

Test Set: Mutually exclusive subset of data used after training is completed, typically 10-20% of the 
dataset, used for evaluation of the model on data which is not used for training the model



Learning
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X: (x1,x2) => inputs
Y:  (red = 0, blue =1) => labels
Dataset: (X,Y) n

Learning Goal – Figure out b, w1 & w2 
such that for any data point (x1,x2), 
model computes the label y accurately

x1

x2

Learning Algorithm

1. Assume random values for b, w1, w2 
2. Iterate until Y predicted correctly for “most” X in Dataset

• Update (b,w1,w2)
3. Use learned weights (b ,w1,w2) to classify X accurately

After Training:
1*x1 + 1*x2 - 9 > 0 

Model:
w1*x1 + w2*x2 - b > 0 

x1

x2

w1

w2

y

b

Inputs                 Weights         Weighted-Sum       Non-linearity           Output



Learning via Optimization
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Empirical Loss or Objective Function

Gradient Descent Algorithm

Update

w

J(w)

Gradient

Initial Weight

J(w)min



Stochastic Gradient Descent (SGD)
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Learning rate Global Minima hard to 
converge on with a non-
convex loss function

Local Minima 
causes undesirable 
convergence, 
suboptimal parameters

Estimate of true gradient 
based on a batch “B” of random 
samples



Key Parameters
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Training Dataset Size: The total number of data points used to train the model

Epoch: One full pass through the entire training dataset to update model weights

Batch Size: A subset of data points used for a single update of the model weights 



• Adaptive Moment Estimation (Adam)

o Adaptive learning rate based on the momentum of gradients  

o Faster and more stable convergence

• Root Mean Square Propagation (RMSprop)

o Adaptive learning rate based on moving average of the squared 
gradients

o Mitigates the problem of exploding or vanishing gradients

• Adagrad

o Adaptive learning rate based on historical gradient information

o Reduces the learning rate for frequently occurring parameters

Improvements on SGD
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Animation from: 
https://imgur.com/s25RsOr

https://imgur.com/s25RsOr


Improvements on SGD
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Non-convex Loss Function Optimization Adam Update Rule Based on Moment “m”

v(t) = m*v(t-1) + (1 - m)*∂J(W)/ ∂ W

W(t) = W(t-1) - η * v(t)

SGD Update

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0


Nonlinearity Modelling
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x1

x2

1. Non-linear relationships 
between input X and output Y 
needs multi-layer models and 
non-linear activation 
functions.

2. Multi-layer model with multiple 
hidden layers for non-linear 
arbitrary function modelling.  
Multiple layers of weights need to 
be learned for accurate prediction.

w1n w2n

3. Choose functions based on 
problem type (binary or multi-
class classification, regression). 
Needs experimentation.

Multilayer Perceptron Activation FunctionsNonlinearity



Under the Hood — Backpropagation
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Error backpropagation using chain rule of 
differentiation essential for learning 
parameters of a deep network

w2 x



Training Resources for Beginners
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MNIST

CIFAR-10

VOC-20



Training with Keras
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# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# Build the model
model = keras.Sequential(

[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),

]
)

# Train the model
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)

# Evaluate the trained model
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])



Training Caveats 
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Caveats:

• Number of training epochs/iterations, dataset 
coverage, affects generalization and accuracy

• Learning rate, batch size, are important hyper-
parameters for convergence and accuracy

Mitigation:

• Hyper-parameter tuning and/or heuristics
• Data augmentation and synthetic data 
• Adjust network architecture (depth, width) to 

improve accuracy and convergence
• Regularization

Regularization

validation

training



Training Caveats — Regularization
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x1

x2

Regularization Methods:

• Early termination

• L1/L2 (loss) regularization

• Dropout

• Batch normalization

Underfit

Overfit

Ideal

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0


L1/L2 Loss Regularization

24© 2024 GMAC Intelligence

Binary Cross Entropy Loss:

• L1 Regularization (sparsity, less complexity)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + λ ||w||1

• L2 Regularization (smooth, less sensitive parameters, computationally efficient training)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + (λ/2) ||w||2

Intuition: smaller values of “w” leads to better generalization, optimal λ for best fit (between overfitting 

and underfitting)



Dropout and Batch Normalization
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image source: primo.ai

Dropout Batch Normalization

Learned parameters: β, γ
Estimated parameters: μ , σ
Hyper parameter: Є

http://primo.ai/index.php?title=Dropout


• Transfer Learning: it is the process of taking a model that has been trained on a large, 
comprehensive dataset for a particular task and then repurposing it for a second “unrelated” task 
(e.g., transfer learning applied from pet segmentation to orthoscopic tissue segmentation)

Transfer Learning
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• Significantly reduce training time and computational resources needed

• Especially useful when target task has limited labelled data



• Fine-tuning: it is the process of taking a model that has been trained on a large, 

comprehensive dataset for a particular task and then tuning some layers to use it for a 

second “related” task.

Fine-tuning
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• Generally used to improve accuracy of a deployed model to handle slightly different inputs not seen 
during training



• Data Augmentation: helps to improve the diversity/distribution of training dataset to match real-
world scenarios. Techniques include rotations, translations, flipping, scaling, and changes in 
brightness or contrast for images. Improves generalization of the model, prevents overfitting and 
makes models more robust.

Data Augmentation

28© 2024 GMAC Intelligence



• Trained deep CNNs can accomplish various vision AI tasks

• Key ingredients for training CNNs: dataset, learning algorithm, back-propagation

• A good dataset should be well-partitioned and represent the underlying distribution of data

• A good training algorithm is efficient in learning parameters from data

• Accuracy and generalization are KPIs of a well-trained network

• Leverage transfer-learning, heuristics and regularization to make training more efficient

• Keras, Tensorflow and Pytorch are good frameworks to start training

Conclusions
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• Keras  https://keras.io/

• Tensorflow https://www.tensorflow.org/

• Pytorch https://pytorch.org/

• Colab Online Training Servers https://colab.research.google.com/

• SOTA Vision Models https://paperswithcode.com/area/computer-vision

• MIT Deep Learning Course http://introtodeeplearning.com/

Further Resources
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https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://colab.research.google.com/
https://paperswithcode.com/area/computer-vision
http://introtodeeplearning.com/

