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• Model compression techniques are crucial for edge computing, reducing deep learning 
model size for lower memory and processing needs

• Knowledge Distillation

• Pruning / Sparsity

• Quantization

• Network Architecture Search (NAS)

Why Quantization?
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• Quantization is the process of mapping real numbers, denoted as "r", to quantized 
integers, represented as "q"

• Symmetric Quantization

• Asymmetric Quantization

where "S" is the scale and "Z" is the zero points

Quantization Scheme
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q = round(r/S)

q = round(r/S + Z)

S = (r_max – r_min) / (q_max – q_min)

Z = round (q_max – r_max / S)



• Symmetric vs asymmetric quantization

• Choice of quantization scheme depends on data distribution

• Make the best use of bit precision

• Avoid outliers in the data distribution

Quantization Scheme
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• Deep Neural Network (DNN) model

• Weights: Symmetric per channel

• Activation: Asymmetric per tensor

DNN Model Quantization
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Histogram distribution of weights and activations [1]



• DNN model quantization

• Quantization Aware Training (QAT)

• Post Training Quantization (PTQ)

DNN Model Quantization
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• Quantization Aware Training (QAT)

• Adds fake quantization nodes during training

• Pros:

• Fine-tune trained float model

• Improves quantized accuracy

• Cons:

• Compute intensive process

• Needs training dataset

Quantization Aware Training (QAT)
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• Post Training Quantization (PTQ)

• Analyze different quantization schemes

• Pros:

• No model training

• Limited calibration dataset

• Cons:

• Degradation in accuracy

Post Training Quantization (PTQ)
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Network Floating-
point

Asymmetric 
per tensor

Asymmetric 
per channel

Mobilenet-v1 1 224 0.709 0.001 0.704

Mobilenet-v2 1 224 0.719 0.001 0.698

Nasnet-Mobile 0.74 0.722 0.74

Mobilenet-v2 1.4 224 0.749 0.004 0.74

Inception-v3 0.78 0.78 0.78

Resnet-v1 50 0.752 0.75 0.75

Resnet-v2 50 0.756 0.75 0.75

Resnet-v1 152 0.768 0.766 0.762

Resnet-v2 152 0.778 0.761 0.77



• Calibration Dataset

• Used to define quantization 
parameters

• Representative dataset

• Limited dataset ~100 to 1K 
images

Calibration Dataset
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• Quantization introduces noise in the weights and activation

• Can lead to significant degradation in model accuracy

• Quantization analysis:

• Quantization error

• Visualization

• Min/max tuning

• Layer-wise analysis

• Mixed precision

• Weight equalization

Quantization Analysis
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Loss surface of ResNet-56 by Hao Li et al. [4]



• Quantization error sources in convolution operation

• Weight quantization error

• Activation quantization error

• Saturation and clipping

• Bias quantization error

Quantization Error
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• Visualization of the weights/activations

• Nature of the distribution

• Multimodal distribution

• Long tails in data distribution

Visualization
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• Min/max tuning is used to eliminate outliers in weights and activations

• Min/max: absolute min/max values

• Percentile: histogram-based percentile to select quantization range

• Entropy: minimize distribution entropy using KL divergence

• MSE: Mean Square Error

Min/Max Tuning
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Model Float (FP32) Max Percentile Entropy MSE

ResNet50 0.846 0.833 0.838 0.840 0.839

EfficietNetB0 0.831 0.831 0.832 0.832 0.832

MobileNetV3Small 0.816 0.531 0.582 0.744 0.577

Accuracy results for different min/max tuning methods on CIFAR100 dataset [5]



• Large quantization errors can be attributed to only a few problematic layers

• Identify the layers use visualization or min/max tuning techniques

Layerwise Error
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• Use different 8-bit/16-bit integers or FP8/FP16 for quantization

• Switch high quantization error layers to higher bit precision

• Reduce quantization overheads for light weight operations by running in float

Mixed Precision
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Model FP32
Accuracy

FP16 
Quantization

INT8 
Quantization

INT16 
Activation

Mixed 
(FP32 + INT8)

precision

ResNet50 0.8026 0.8028 0.8022 0.8021 0.8048

EfficietNetB2 0.8599 0.8593 0.8083 0.8578 0.8597

MobileNetV3Small 0.8365 0.8368 0.4526 0.7979 0.8347

Evaluation of mixed precision accuracy on CIFAR10 dataset [5]



• Reduce the variance of weight distribution across channels

• Adjust the scale factor across layers

• Enables use of simpler quantization schemes like per tensor instead of per channel

Quantization Analysis: Weight Equalization
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• Model selection
• Large models are more tolerant of quantization error.
• NAS for efficient architecture for quantization

• Model quantization
• Post Training Quantization (PTQ) is favored for its efficiency
• Quantization Aware Training (QAT) is resource-intensive but effective

• Calibration dataset
• Statistical data from around ~100-1K samples for quantization parameters

• Quantization tools
• Available tools for support of different quantization schemes
• Limited quantization analysis capabilities

Quantization: Best Practices
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• Quantization Scheme

• Weights: Symmetric-per-channel quantization

• Activations: Asymmetric-per-tensor quantization

• Quantization Evaluation

• Evaluate model quantized accuracy across different quantization schemes

• Quantization Analysis
• Identify potentially problematic layers through layer-wise analysis
• Degradation in accuracy could potentially be recovered through techniques like

mixed precision, min/max tuning and weight equalization.

Quantization: Best Practices
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Thank you!


