

DNN Quantization: Theory to Practice

Dwith Chenna MTS Product Engineer, Al Inference AMD Inc.

Content

- Why Quantization?
- Quantization Schemes
- DNN Model Quantization
- Quantization Aware Training (QAT)
- Post Training Quantization (PTQ)
- Quantization Analysis
- Quantization: Best Practices

Why Quantization?

- Model compression techniques are crucial for edge computing, reducing deep learning model size for lower memory and processing needs
 - Knowledge Distillation
 - Pruning / Sparsity
 - Quantization
 - Network Architecture Search (NAS)

Quantization Scheme

- Quantization is the process of mapping real numbers, denoted as "r", to quantized integers, represented as "q"
 Symmetric Distribution
 - Symmetric Quantization
 q = round(r/S)
 - Asymmetric Quantization

q = round(r/S + Z)

where "S" is the scale and "Z" is the zero points $S = (r_max - r_min) / (q_max - q_min)$

 $Z = round (q_max - r_max / S)$

Data

Quantization Scheme

- Symmetric vs asymmetric quantization
- Choice of quantization scheme depends on data distribution
- Make the best use of bit precision
- Avoid outliers in the data distribution

DNN Model Quantization

Deep Neural Network (DNN) model

• Weights: Symmetric per channel

• Activation: Asymmetric per tensor

Histogram distribution of weights and activations [1]

DNN Model Quantization

- DNN model quantization
 - Quantization Aware Training (QAT)
 - Post Training Quantization (PTQ)

Quantization Aware Training (QAT)

- Fine-tune trained float model ٠
- Improves quantized accuracy •
- Cons:

Pros:

٠

- Compute intensive process ۰
- Needs training dataset ٠

Post Training Quantization (PTQ)

- Post Training Quantization (PTQ)
- Analyze different quantization schemes
- Pros:
 - No model training
 - Limited calibration dataset
- Cons:
 - Degradation in accuracy

Network	Floating- point	Asymmetric per tensor	Asymmetric per channel	
Mobilenet-v1 1 224	0.709	0.001	0.704	
Mobilenet-v2 1 224	0.719	0.001	0.698	
Nasnet-Mobile	0.74	0.722	0.74	
Mobilenet-v2 1.4 224	0.749	0.004	0.74	
Inception-v3	0.78	0.78	0.78	
Resnet-v1 50	0.752	0.75	0.75	
Resnet-v2 50	0.756	0.75	0.75	
Resnet-v1 152	0.768	0.766	0.762	
Resnet-v2 152	0.778	0.761	0.77	

Calibration Dataset

100

1000 10000

- Calibration Dataset
 - Used to define quantization parameters
 - Representative dataset
 - Limited dataset ~100 to 1K images

Accuracy

80 60 40 20 resNet50 VGG16 inceptionV3 mobileNetV2 Network

Accuracy vs Calibration dataset size

Calibration dataset size 10

Quantization Analysis

embedded VISION SUMMIT

- Quantization introduces noise in the weights and activation
- Can lead to significant degradation in model accuracy
- Quantization analysis:
 - Quantization error
 - Visualization
 - Min/max tuning
 - Layer-wise analysis
 - Mixed precision
 - Weight equalization

Loss surface of ResNet-56 by Hao Li et al. [4]

Quantization Error

- Quantization error sources in convolution operation
 - Weight quantization error
 - Activation quantization error
 - Saturation and clipping
 - Bias quantization error

Visualization

embedded VISION SUMMIT

- Visualization of the weights/activations
- Nature of the distribution
 - Multimodal distribution
 - Long tails in data distribution

Min/Max Tuning

- Min/max tuning is used to eliminate outliers in weights and activations
 - Min/max: absolute min/max values
 - Percentile: histogram-based percentile to select quantization range
 - Entropy: minimize distribution entropy using KL divergence
 - MSE: Mean Square Error

Model	Float (FP32)	Max	Percentile	Entropy	MSE
ResNet50	0.846	0.833	0.838	0.840	0.839
EfficietNetB0	0.831	0.831	0.832	0.832	0.832
MobileNetV3Small	0.816	0.531	0.582	0.744	0.577

Accuracy results for different min/max tuning methods on CIFAR100 dataset [5]

Layerwise Error

- Large quantization errors can be attributed to only a few problematic layers
- Identify the layers use visualization or min/max tuning techniques

Mixed Precision

- Use different 8-bit/16-bit integers or FP8/FP16 for quantization
- Switch high quantization error layers to higher bit precision
- Reduce quantization overheads for light weight operations by running in float

Model	FP32 Accuracy	FP16 Quantization	INT8 Quantization	INT16 Activation	Mixed (FP32 + INT8) precision
ResNet50	0.8026	0.8028	0.8022	0.8021	0.8048
EfficietNetB2	0.8599	0.8593	0.8083	0.8578	0.8597
MobileNetV3Small	0.8365	0.8368	0.4526	0.7979	0.8347

Evaluation of mixed precision accuracy on CIFAR10 dataset [5]

Quantization Analysis: Weight Equalization

- Reduce the variance of weight distribution across channels
- Adjust the scale factor across layers
- Enables use of simpler quantization schemes like per tensor instead of per channel

Quantization: Best Practices

- Model selection
 - Large models are more tolerant of quantization error.
 - NAS for efficient architecture for quantization
- Model quantization
 - Post Training Quantization (PTQ) is favored for its efficiency
 - Quantization Aware Training (QAT) is resource-intensive but effective
- Calibration dataset
 - Statistical data from around ~100-1K samples for quantization parameters
- Quantization tools
 - Available tools for support of different quantization schemes
 - Limited quantization analysis capabilities

Quantization: Best Practices

• Quantization Scheme

- Weights: Symmetric-per-channel quantization
- Activations: Asymmetric-per-tensor quantization

• Quantization Evaluation

• Evaluate model quantized accuracy across different quantization schemes

• Quantization Analysis

- Identify potentially problematic layers through layer-wise analysis
- Degradation in accuracy could potentially be recovered through techniques like mixed precision, min/max tuning and weight equalization.

References

[1] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[2] From Theory to Practice: Quantizing Convolutional Neural Networks for Practical Deployment [Link]

[3] Quantization of Convolutional Neural Networks: Model Quantization [Link]

[4] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural nets. In Advances in Neural Information Processing Systems, pages 6389–6399, 2018.

[5] Quantization of Convolutional Neural Networks: Quantization Analysis [Link]

Thank you!