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Efficiently deploying AI models 
on embedded devices can be challenging

• Hardware deployment is typically not considered 
when designing AI models

• Common problems:

▪ Sub-optimal real-time performance and/or
model does not fit on device

▪ Even after applying common NN optimizations
(e.g., quantization and/or pruning)
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Figure generated by DALL-E3 

What to do when common NN optimizations
(e.g., quantization and/or pruning) are not sufficient?
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Neural Architecture Search (NAS)
can derive edge-ready models automatically

• Neural Architecture Search (NAS) 
can derive highly efficient edge-ready 
models automatically:

▪ Optimized for multiple objectives
(e.g., task performance, and hardware-
related metrics)

▪ Considering deployment aspects during 
the search process
(e.g., efficiency of quantized operators)
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NAS outperforms manually designed NN architectures

© 2024 NXP Semiconductors

NAS has become the de facto approach for NN design, as it can find NN architectures
that outperform manual designs in an automated manner

NAS-based networks

[1]
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• NAS is coarsely defined by three aspects:

1. Search space 

2. Search strategy

3. Performance estimation

How does NAS work?

Search Space

Which architectures, quantization settings,
and training related hyperparameters

can be found?

Search Strategy
Performance

Estimation

How to explore the space
of solutions?

How does a candidate
solution perform in terms of 

task performance and hardware costs?

89%, 1MB  

© 2024 NXP Semiconductors

[2]

NAS loop
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How does NAS work?

Design decisions w.r.t. these 3 aspects impact resource requirements and evaluation time

➢ Random search

➢ Evolutionary 
Algorithms

➢ Bayesian optimization
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hardware-related cost:

➢ Full training 

➢ Zero cost proxies
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Search Space Search Strategy Performance Estimation

➢ HIL*

➢ Surrogate models

*Hardware-in-the-loop

• NAS is coarsely defined by three aspects:

1. Search space 

2. Search strategy

3. Performance estimation
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NAS can be computationally expensive, so
how to approach NAS in a scalable manner?
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Given a CNN for 
real-time person detection[3]

How to approach NAS in a scalable manner?
Demo application of NAS: real-time person detection

Reduce inference latency when deployed 
on edge hardware without degrading 

performance

Person Detector
(ShuffleNetV2[5] based) 

Person Detector (INT8)
Baseline: 5.95 FPS 

NAS
Person Detector (INT8)

Target: 10.0 FPS 
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Target Hardware

AI
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How to approach NAS in a scalable manner?
Design the search space looking at layer-wise statistics

Parameter Baseline Options

Kernel size 5 {3, 5}

# Groups 1 {1, 2, 4, 8}

# Channels 96 [24, 96]

Img. width 320 [220, 320]

Which parts of the 
network contribute the 
most towards latency?
▪ Idea: Focus first on 

optimizing performance 
bottlenecks
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Search Space
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Search Space

Which parts of the 
network contribute the 
most towards latency?
▪ Idea: focus first on 

optimizing performance 
bottlenecks

▪ Detection head search 
space:

How to approach NAS in a scalable manner?
Select the search strategy based on the search space size

Search Strategy

Which search strategy can 
adequately explore the 
search space?
▪ Idea: Select based on the 

size of the search space
➢ Given the relatively large 

space, rely on a more 
“sophisticated” approach: 
Bayesian optimization

Parameter Baseline Options

Kernel size 5 {3, 5}

# Groups 1 {1, 2, 4, 8}

# Channels 96 [24, 96]

Img. width 320 [220, 320]
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Search Space Search Strategy

10



How to approach NAS in a scalable manner?
Select perf. estimation based on the search compute budget

© 2024 NXP Semiconductors

Search Strategy

Which search strategy can 
adequately explore the 
search space?
▪ Idea: select based on the 

size of the search space
➢ Given the relatively large 

space, rely on a more 
“sophisticated” approach: 
Bayesian optimization

Performance Estimation

Which strategy can address 
my compute budget?
▪ Idea: Use the time it takes to 

train a single network as a 
reference to estimate the search 
time for N trials and select based 
on this.

▪ Example for demo application:
➢ One network → ~12 min.

➢ 100 trials → ~2.5 GPU days‡

➢ If 2.5 days is within compute 
budget, full training can be a good 
solution.

➢ Hardware-related cost:
Inference latency via HIL*

Performance Estimation

*Hardware-in-the-loop
‡ GPU day = # GPUs x Wall clock days

Search StrategySearch Space

Which parts of the 
network contribute the 
most towards latency?
▪ Idea: focus first on 

optimizing performance 
bottlenecks

▪ Detection head search 
space:

Parameter Baseline Options

Kernel size 5 {3, 5}

# Groups 1 {1, 2, 4, 8}

# Channels 96 [24, 96]

Img. width 320 [220, 320]

Search Space
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NAS can achieve substantial efficiency improvements 
without compromising task performance

+0.53 AP*

40% faster

NAS tool:

▪ Optuna[6]

Search time: 

▪ ~2.5 GPU days‡

(100 trials)

NAS reduces inference latency by 40% while keeping similar task performance 
compared to the baseline seed network

© 2024 NXP Semiconductors *AP: Average Precision [@0.5 IoU]

*

‡ Pareto front: best trade-off between conflicting objectives

‡
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NAS can achieve substantial efficiency improvements 
without compromising task performance

© 2024 NXP Semiconductors

NAS reduces inference latency by 40% while keeping similar task performance 
compared to the baseline seed network

‡ GPU day = # GPUs x Wall clock days

5.5 FPS

Baseline Model

10 FPS

NAS Model

NAS tool:

▪ Optuna[6]

Search time: 

▪ ~2.5 GPU days‡

(100 trials)
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Search Space

Which part of the network 
to optimize to reduce the 
inference latency?
▪ Idea: focus on performance 

bottlenecks
➢ #FLOPs as proxy for analysis

(high correlation w/latency)

▪ Detection head search 
space:

How to approach NAS in a scalable manner?
Select perf. estimation based on the search compute budget
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Search Strategy

Which search strategy can 
adequately explore the 
search space?
▪ Idea: select based on the 

size of the search space
➢ Given large space, rely on a 

more “sophisticated” 
approach: Multi-objective 
Tree Parzen Estimation

➢ For smaller search spaces, 
random search may be 
sufficient!

Search Space
Performance Estimation

Which strategy can address 
my compute budget?
▪ Idea: Use the time it takes to 

train a single network as a 
reference to estimate the search 
time for N trials and select based 
on this.

▪ Example for demo application:
➢ One network → ~12 min.

➢ 100 trials → ~2.5 GPU days‡

➢ If 2.5 days is within compute 
budget, full training can be a good 
solution.

➢ Hardware-related cost:
Inference latency via HIL*

Performance Estimation

*Hardware-in-the-loop

Parameter Baseline Options

Kernel size 5 {3, 5}

# Groups 1 {1, 2, 4, 8}

# Channels 96 [24, 96]

Img. width 320 [220, 320]

‡ GPU day = # GPUs x Wall clock days

Search Strategy

What if I don’t have
this compute budget, or baseline 
training is substantially higher for 

my use case?
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How to approach NAS in a scalable manner?
Improving NAS scalability via efficient perf. estimation

Learning-curve Methods
(e.g., early stopping)

• Can be sensitive to # epochs

Model-based Predictors
(e.g., XGBoost)

▪ May require many 
training samples

Zero-Cost Proxies
(e.g., # FLOPs#)

• Many to pick from + wildly 
different correlations 
depending on the task[7]

Low-fidelity estimates

© 2024 NXP Semiconductors

Performance Estimation

Which strategy can address 
my compute budget?

If little compute budget is 
available:

Idea: Rely on low-fidelity 
estimates[7]

▪ Challenge: 
How to select one?

Performance Estimation

# FLOP: Floating Point Operation 15



How to approach NAS in a scalable manner?
Improving NAS scalability via efficient perf. estimation

Two-stage approach for performance estimation strategy selection

© 2024 NXP Semiconductors

Performance Estimation

Which strategy can address 
my compute budget?

If little compute budget is 
available:

Idea: Rely on low-fidelity 
estimates[7]

▪ Challenge: 
How to select one?

▪ Solution:
Two-stage approach for 
performance estimation 
strategy selection

Performance Estimation
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Efficient performance estimation can substantially 
improve NAS scalability

© 2024 NXP Semiconductors
*AP: Average Precision [@0.5 IoU]

‡ Pareto front: best trade-off between conflicting objectives

Perf. Estimation

Out of 24 estimation strategies,
Bayesian Ridge (𝝉 = 𝟎. 𝟓𝟐) and
# FLOPs# (𝝉 = 𝟎. 𝟓) achieve the 
highest correlation on this use 
case
• ~40 training samples are sufficient to 

make an informed selection

Performing NAS using the above 
strategies, we achieve competitive 
performance compared to full 
training while substantially 
speeding up search time
• Note that the reported speedup 

already considers the time required to 
select the perf. estimation strategies

Search
Time

(Seconds)

Search
Speedup

Post Search 
Training

Time
(Seconds)

Total Search Time
(seconds)

Overall
Speedup

Full training 96,000 1.0 N/A 96,000 (26.6 Hours) 1.0

Bayesian Ridge 30 x3,200 6,400 6,430 (1.78 Hours) x14.93

FLOPs# 6 x16,000 9,600 9,606 (2.66 Hours) x10

Performance Estimation

*

‡

‡

‡

# FLOP: Floating Point Operation 17



Let’s wrap-up: Some insights and takeaways

− Focus first on the performance bottlenecks:
➢ Focused searches can be a way to leverage the power of NAS while keeping compute tractable

Search Space Design

− Consider the search space size:
➢ Large search spaces can benefit from “sophisticated” approaches. However, random search may be 

sufficient for small ones

Search Strategy Selection

− Consider the time it takes to train the baseline network:
➢ Depending on your compute budget, there may be no need for “sophisticated” performance 

estimation techniques if training a single network is cheap

➢ Efficient performance estimation can unlock substantial speedups when compute budget is limited

Performance Estimation Strategy Selection

© 2024 NXP Semiconductors 18



Resources

NXP @ 2024 Embedded Vision Summit

Enabling Technologies Session:

• Efficiency Unleashed: The Next-Gen NXP i.MX 95 
Applications Processor for Embedded Vision 
(Thursday, May 23rd – 12:00 PM)

See us at the NXP booth (503)

• i.MX95 Quad Camera Object Detection Demo

• Mobile Robot Buggy Demo

• i.MX93 Smart Fitness

• and more!

© 2024 NXP Semiconductors

References:

• [1] H. Cai, et al., “Once-for-all: Train One Network and Specialize
it for Efficient Deployment”, ICLR ’20

• [2] T. Elsken, et al., “Neural Architecture Search: A Survey”, JMLR ‘19

• [3] https://github.com/dog-qiuqiu/FastestDet

• [4] M. Everingham, et al., “The PASCAL Visual Object Classes (VOC)
Challenge”, IJCV ’10

• [5] N. Ma, et al., “Shufflenet v2: Practical guidelines for efficient
cnn architecture design”, ECCV ’18

• [6] T. Akiba, et al., “Optuna: A next-generation hyperparameter optimization 
framework,” KDD ‘19

• [7] C. White, et al., “How Powerful are Performance Predictors in Neural Architecture 
Search”, NIPS ‘21

NXP Semiconductors AI/ML:

• NXP Semiconductors Edge AI Portfolio

• NXP eIQ ML Software Development Environment
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