

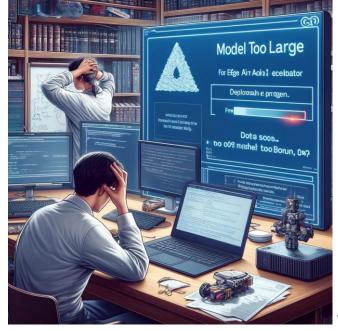
Leveraging Neural Architecture Search for Efficient Computer Vision at the Edge

Hiram Rayo Torres Rodriguez Senior Embedded AI Research Engineer NXP Semiconductors

Efficiently deploying Al models on embedded devices can be challenging

- Hardware deployment is typically not considered when designing AI models
- Common problems:
 - Sub-optimal real-time performance and/or model does not fit on device
 - Even after applying common NN optimizations (e.g., quantization and/or pruning)

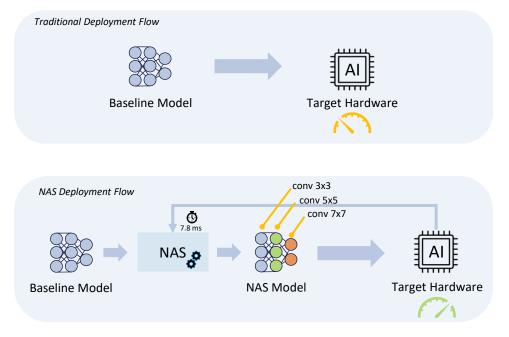
What to do when common NN optimizations (e.g., quantization and/or pruning) are not sufficient?



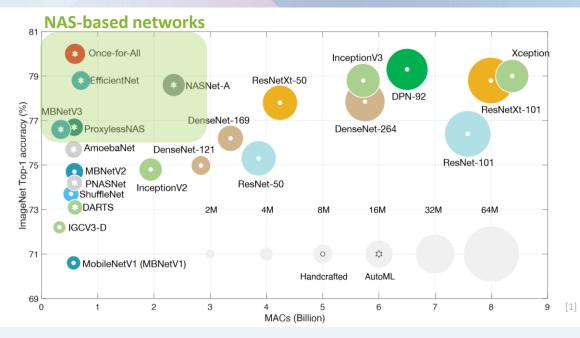
Neural Architecture Search (NAS) can derive edge-ready models automatically

- Neural Architecture Search (NAS) can derive highly efficient edge-ready models automatically:
 - Optimized for multiple objectives

 (e.g., task performance, and hardware-related metrics)
 - Considering deployment aspects during the search process (e.g., efficiency of quantized operators)



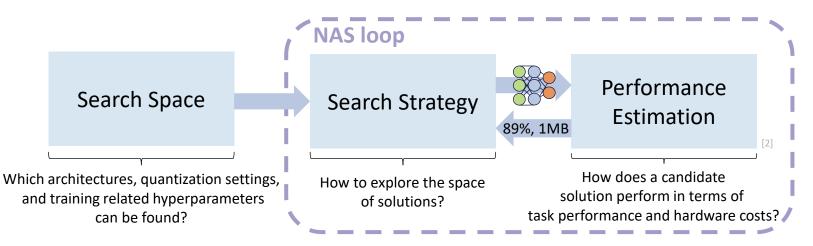
NAS outperforms manually designed NN architectures



NAS has become the de facto approach for NN design, as it can find NN architectures that outperform manual designs in an automated manner

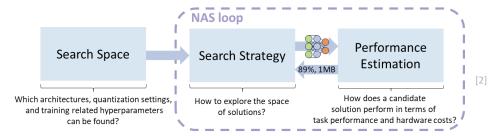
How does NAS work?

- NAS is coarsely defined by three aspects:
 - 1. Search space
 - 2. Search strategy
 - 3. Performance estimation



How does NAS work?

- NAS is coarsely defined by three aspects:
 - 1. Search space
 - 2. Search strategy
 - 3. Performance estimation

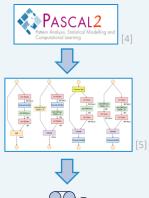


Design decisions w.r.t. these 3 aspects impact resource requirements and evaluation time

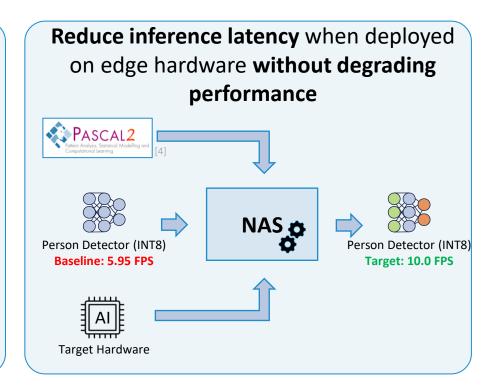
NAS can be computationally expensive, so how to approach NAS in a scalable manner?

How to approach NAS in a scalable manner? Demo application of NAS: real-time person detection

Given a CNN for real-time person detection



Person Detector (ShuffleNetV2^[5] based)

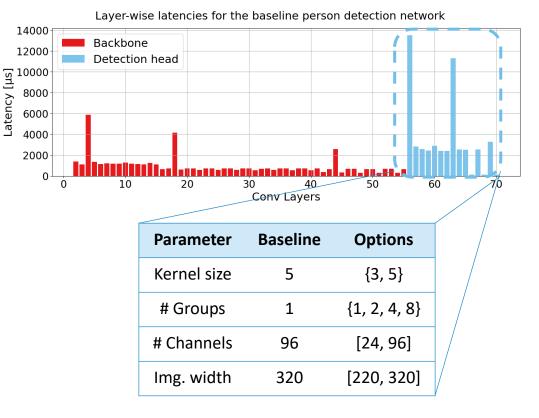


How to approach NAS in a scalable manner? Design the search space looking at layer-wise statistics

Search Space

Which parts of the network contribute the most towards latency?

 Idea: Focus first on optimizing performance bottlenecks



How to approach NAS in a scalable manner? Select the search strategy based on the search space size

Search Space

Which parts of the network contribute the most towards latency?

- Idea: focus first on optimizing performance bottlenecks
- Detection head search space:

Parameter	Baseline	Options
Kernel size	5	{3, 5}
# Groups	1	{1, 2, 4, 8}
# Channels	96	[24, 96]
Img. width	320	[220, 320]

Search Strategy

Which search strategy can adequately explore the search space?

- Idea: Select based on the size of the search space
 - Given the relatively large space, rely on a more "sophisticated" approach:
 Bayesian optimization

How to approach NAS in a scalable manner? Select perf. estimation based on the search compute budget

Search Space

Which parts of the network contribute the most towards latency?

- Idea: focus first on optimizing performance bottlenecks
- Detection head search space:

Parameter	Baseline	Options
Kernel size	5	{3, 5}
# Groups	1	{1, 2, 4, 8}
# Channels	96	[24, 96]
Img. width	320	[220, 320]

Search Strategy

Which search strategy can adequately explore the search space?

- Idea: select based on the size of the search space
 - Given the relatively large space, rely on a more "sophisticated" approach:
 Bayesian optimization

Performance Estimation

Which strategy can address my compute budget?

- Idea: Use the time it takes to train a single network as a reference to estimate the search time for *N* trials and select based on this.
- Example for demo application:
 - > One network \rightarrow ~12 min.
 - \succ 100 trials \rightarrow ~2.5 GPU days[‡]
 - If 2.5 days is within compute budget, full training can be a good solution.
 - Hardware-related cost: Inference latency via HIL*

NAS can achieve substantial efficiency improvements without compromising task performance

NAS tool: 64 Optuna^[6] 62 60 ^{*}4P 58 +0.53 AP* Search time: 40% faster 54 ~2.5 GPU days[‡] Pareto Front[‡](INT8) (100 trials) 52 FastestDet Seed (INT8) 50 50 100 150 200 Latency [ms]

NAS on Pascal-VOC 2012 Validation

NAS reduces inference latency by 40% while keeping similar task performance compared to the baseline seed network

250

300

‡ GPU day = # GPUs x Wall clock days

© 2024 NXP Semiconductors

‡ Pareto front: best trade-off between conflicting objectives

NAS can achieve substantial efficiency improvements without compromising task performance

NAS tool:

Optuna^[6]

Search time:

 ~2.5 GPU days[‡] (100 trials)

NAS Model

NAS reduces inference latency by 40% while keeping similar task performance compared to the baseline seed network

How to approach NAS in a scalable manner? Select perf. estimation based on the search compute budget

Search Space

Which part of the network to optimize to reduce the

Which search strategy can

Search Strategy

ed on the

th space

ated

ce, rely on a

i-objective

adequately explore the

inferen

 Idea: bottle
 > #FL((hig)

What if I don't have this compute budget, or baseline training is substantially higher for my use case?

Detec

space:

Parameter	Baseline	Options
Kernel size	5	{3, 5}
# Groups	1	{1, 2, 4, 8}
# Channels	96	[24, 96]
lmg. width	320	[220, 320]

For smaller search spaces, random search may be sufficient!

mee rangen estimation

Performance Estimation

Which strategy can address my compute budget?

- Idea: Use the time it takes to train a single network as a reference to estimate the search time for *N* trials and select based on this.
- Example for demo application:
- > One network \rightarrow ~12 min.

> 100 trials -> ~2.5 GPU days[‡]

- If 2.5 days is within compute budget, full training can be a good solution.
- Hardware-related cost: Inference latency via HIL*

How to approach NAS in a scalable manner? Improving NAS scalability via efficient perf. estimation

Performance Estimation

Which strategy can address my compute budget?

- If little compute budget is available: Idea: Rely on low-fidelity estimates^[7]
- Challenge: How to select one?

Low-fidelity estimates

Learning-curve Methods (e.g., early stopping)

• Can be sensitive to # epochs

Model-based Predictors

(e.g., XGBoost)

 May require many training samples

Zero-Cost Proxies (e.g., # FLOPs[#])

 Many to pick from + wildly different correlations depending on the task^[7]

embedded

SUMMIT

How to approach NAS in a scalable manner? Improving NAS scalability via efficient perf. estimation

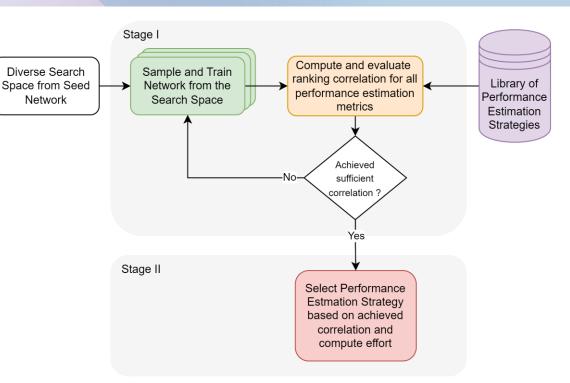
Performance Estimation

Which strategy can address my compute budget?

If little compute budget is available: Idea: Rely on low-fidelity estimates^[7]

- Challenge:
 How to select one?
- Solution:

Two-stage approach for performance estimation strategy selection



Two-stage approach for performance estimation strategy selection

Efficient performance estimation can substantially improve NAS scalability

x10

Performance Estimation

Out of 24 estimation strategies, Bayesian Ridge ($\tau = 0.52$) and # FLOPs[#] ($\tau = 0.5$) achieve the highest correlation on this use case

 ~40 training samples are sufficient to make an informed selection

Performing NAS using the above strategies, we achieve **competitive** performance compared to full training while substantially speeding up search time

Note that the reported speedup • already considers the time required to select the perf. estimation strategies

[Search Strategy: Random Search] 0.62 validation AP 2E922 Pareto Front⁺(Full Training) Pareto Front[‡](Flops - 100 Trials) 0.54 Pareto Front[‡](Bayesian Ridge - 100 Trials) 1.2 1.6 1.8 2.0 1.4 Number of Parameters Search Search Total Search Time Overall Post Search Time Speedup Training (seconds) Speedup (Seconds) Time (Seconds) Full training 96,000 1.0 N/A 96,000 (26.6 Hours) 1.0 **Bayesian Ridge** 30 x3,200 6,400 6,430 (1.78 Hours) x14.93 6 x16,000 9,606 (2.66 Hours)

9,600

NAS ConvNets Performance for Person Detection

© 2024 NXP Semiconductors

FLOPs#

‡ Pareto front: best trade-off between conflicting objectives 17 *AP: Average Precision [@0.5 IoU]

Let's wrap-up: Some insights and takeaways

Search Space Design

- Focus first on the performance bottlenecks:
 - > Focused searches can be a way to leverage the power of NAS while keeping compute tractable

Search Strategy Selection

- Consider the search space size:
 - Large search spaces can benefit from "sophisticated" approaches. However, random search may be sufficient for small ones

Performance Estimation Strategy Selection

- Consider the time it takes to train the baseline network:
 - Depending on your compute budget, there may be no need for "sophisticated" performance estimation techniques if training a single network is cheap
 - > Efficient performance estimation can unlock substantial speedups when compute budget is limited

Resources

NXP @ 2024 Embedded Vision Summit

Enabling Technologies Session:

 Efficiency Unleashed: The Next-Gen NXP i.MX 95 Applications Processor for Embedded Vision (Thursday, May 23rd – 12:00 PM)

See us at the NXP booth (503)

- i.MX95 Quad Camera Object Detection Demo
- Mobile Robot Buggy Demo
- i.MX93 Smart Fitness
- and more!

References:

٠

- [1] H. Cai, et al., "Once-for-all: Train One Network and Specialize it for Efficient Deployment", ICLR '20
- [2] T. Elsken, et al., "Neural Architecture Search: A Survey", JMLR '19
- [3] <u>https://github.com/dog-qiuqiu/FastestDet</u>
- [4] M. Everingham, et al., "The PASCAL Visual Object Classes (VOC) Challenge", IJCV '10
- [5] N. Ma, et al., "Shufflenet v2: Practical guidelines for efficient cnn architecture design", ECCV '18
- [6] T. Akiba, et al., "Optuna: A next-generation hyperparameter optimization framework," KDD '19
- [7] C. White, et al., "How Powerful are Performance Predictors in Neural Architecture Search", NIPS '21

NXP Semiconductors AI/ML:

- <u>NXP Semiconductors Edge AI Portfolio</u>
- NXP eIQ ML Software Development Environment

