

Real-Time Retail Product Classification on Android Devices inside the Caper Al Cart

David Scott
Senior Machine Learning Engineer
Instacart (Caper)

Table of Contents

Instacart and Caper

Current challenges for such products

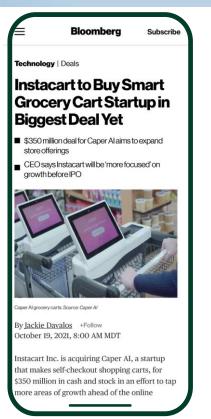
The novel proposed approach

Approach to reduce resource usage

Approach to integrate with Android system

Performance results

Caper @ Instacart



A Seamless Shopping Experience

Caper Cart

- Sensor Fusion & Al Integrated
 Providing customers with a more
 convenient way to shop
- Weights & Measures Enabled
 Robust and certified
- Embedded Location Systems
 Streamlining the shopper experience

Computer Vision and Al @ Caper

In order to unlock a magical shopping experience, we enable seamless AI that detects and recognizes products in less than 0.5 seconds

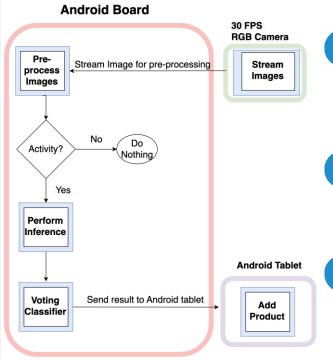
Current Challenges for Such Products

- High-throughput model with high accuracy
 Ensure smooth and efficient detection

 Avoid delays or disruptions in user experience
- Limited by system constraints
 Limited CPU resources shared by Android services
 Model speed can impact overall app degradation
- User experience

 How can we utilize the hardware + software resources
 we have to improve our user experience without
 requiring re-educating our customer?

Proposed Approach



Generate image stream and process directly on Android board

Utilize 30 FPS red-green-blue (RGB) camera to stream images for processing

- 2 Skip processing images on Jetson GPU
 Utilize the processing power of our Android board
 to stream and process images directly on Android
 - **Deploy using TensorFlow Lite (TFLite)**Train and convert our PyTorch models to TFLite for model inference

Proposed Approach

*instacart

- User adds product under our camera
 Get a stream of images that are background removed
- Perform inference on each image
 Android board takes in images as an input and
 returns embeddings
- 3 Utilize a voting classifier with embeddings
 - Generate one set of embeddings per frame from a single network
 - Utilize ground truth embeddings to calculate highest similarity in class

Approach to Reduce Resource Usage

Approach to Reduce Resource Usage: Camera

Frame skipping

Do we have an accuracy reduction or lose important information by skipping frames?

Re-using circular buffers

Other services utilize the same camera; we can re-use buffers

Reducing the resolution of incoming image stream

Since our model utilizes 224 [w, h] images, is it possible to modify the camera firmware to give us smaller images?

Approach to Reduce Resource Usage: System

Threading

How many threads is necessary to maximize the performance of the system?

Perfetto traces

Utilized to help pinpoint heavy system resource usages on CPU and RAM

Reducing embeddings dimensions

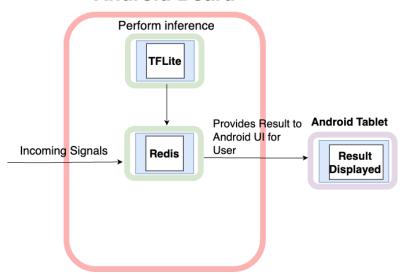
By decreasing the dimensions and # of our output embeddings, we reduced system usage

Approach to Integrate with Android System

Approach to Integrate with Android System

13

Android Board



- Utilizing co-routines and state machine learning model
 - Break thread if issue arises, avoiding impact on other apps
- Incoming signals via Redis
 Combine information across services to give best
 result
- **3** TFLite integration
 - Feed model and perform embedding similarity
 - Utilize TFLite built in optimizations for ondevice inference

Results and Next Steps

Android Performance Metrics

15

CPU usage

Get the best performance while minimizing CPU usage for other Apps

Model throughput

How can we optimize model throughput while maintaining precision and recall?

Camera speed

Higher FPS gets us better recognition

More FPS = More CPU;
how to balance?

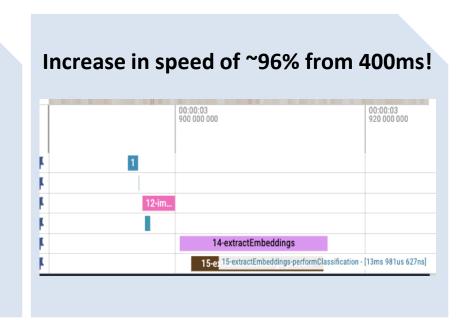
Android Performance Metrics — Model Throughput

16

Model throughput

We optimized our throughput by the following:

- Using INT8 instead of FLOAT32
- Utilizing 112x112 to train model instead of 224x224
- Decreasing output embedding size



Android Performance Metrics — Camera FPS

17

Camera FPS

We optimized our image resolution + camera FPS by

- Using 640P images @ 30 FPS
- Re-using existing circular buffers from another service
- Worked with camera vendor to get custom firmware

Throughput + resolution investigation

```
sorted supported format(MJPG) w*h(320x240)@30.000000 fps sorted supported format(MJPG) w*h(352x288)@30.000000 fps sorted supported format(YUYV) w*h(640x480)@30.000000 fps sorted supported format(MJPG) w*h(800x600)@30.000000 fps sorted supported format(MJPG) w*h(1280x720)@30.000000 fps sorted supported format(MJPG) w*h(1280x960)@30.000000 fps sorted supported format(MJPG) w*h(1920x1080)@30.000000 fps sorted supported format(MJPG) w*h(1600x1200)@15.000000 fps sorted supported format(MJPG) w*h(2592x1944)@15.000000 fps sorted supported format(MJPG) w*h(2592x1944)@15.000000 fps sorted supported format(MJPG) w*h(2592x1944)@15.000000 fps
```

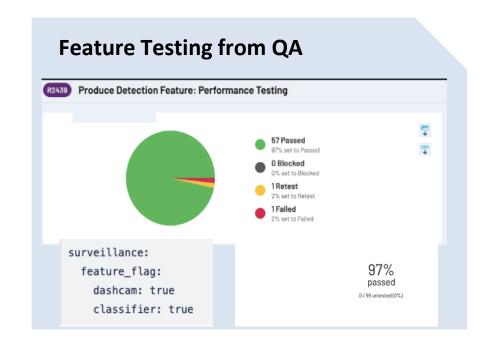

Android Performance Metrics — CPU Usage

18

CPU usage

We optimized CPU usage by optimizing our model & camera

- Skip intermediate steps, like image resizing
- Feed system with a queue of images
- Stress test across our system to ensure performance



Next Steps

19

- 1 Further optimizations
 Continuous improvement of model accuracy and speed
- 2 Improving TFLite ecosystem and documentation

Contribute our learnings and findings to the sparse documentation for TFLite.

Utilizing research to enhance user experience
Provide a seamless and delightful experience for users

Conclusions

20

- Solve your problems first with hardware
 Optimizing hardware selection is a great place to
 start before software
- Optimizing throughput leads to better overall performance
 Gains in throughput speed helped decrease CPU usage (through frame skipping)
- Deeply investigating pre-processing and model steps to maximize throughput

 Spending time investigating pre-processing and model optimization was fruitful for the team

Resources

TensorFlow Lite Documentation:

- <u>TensorFlow Lite Model Optimization</u>
 <u>Documentation</u>
- <u>TensorFlow Lite Quantization Documentation</u>
- TensorFlow Lite Model Analyzer Documentation

Android Development for TensorFlow Lite:

Quickstart for Android Development

Thank you for your time! Look forward to answering your questions

David Scott

Senior Machine Learning Engineer Instacart (Caper)

https://www.linkedin.com/in/davejscott/

