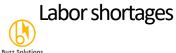


Innovative Applications of Computer Vision for Power Utility Infrastructure Inspection

Vikhyat Chaudhry Co-Founder, CTO and COO Buzz Solutions


Utilities are facing a host of critical infrastructure challenges

Aging infrastructure

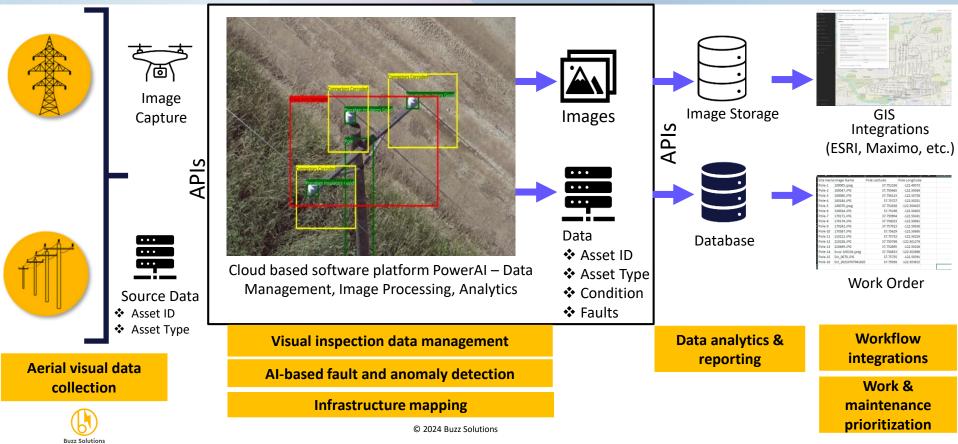
Storms & grid-sparked wildfires

Substation vandalism

Grid modernization & digitization ²

Bran Rinck, Principal Andrew Read Nos

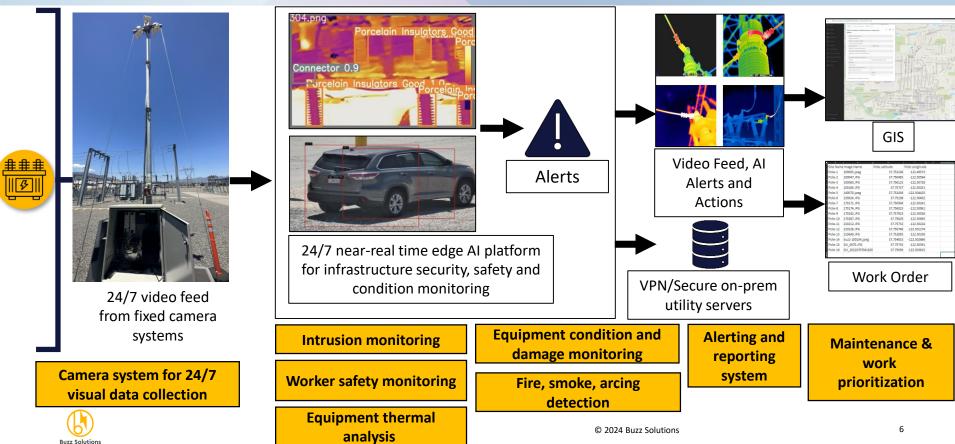
Supply chain issues



The Solutions: PowerAI & PowerGUARD

PowerAl platform

PowerGUARD – 24/7 substation alerting solution



Security	Safety	Equipment Monitoring	Thermal
 Facility entry security Unauthorized vehicle Unauthorized person Animal entry 	 Personnel safety PPE gear and hard hat identification Substation personnel injury 	 High energy release event Smoke Fire Arc flashing Oil leakage Reactor Transformer 	 High temperature and overheating events Fans Radiators Bushings Insulators Reactors Transformers

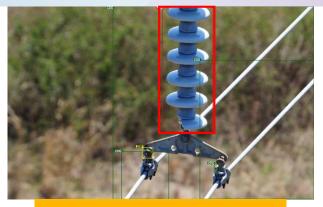
PowerGUARD platform

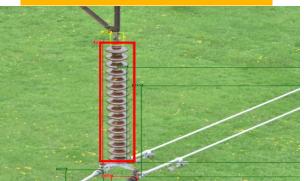
PowerAI – The datasets

PowerAI – The datasets

Pole Cap Damage

Cross Arm Damage


Pole Cavities and Cracks


Vegetation Encroachment

PowerAI – The datasets

Insulator Damage

Insulator Flashing, Conductor Damaged, Rusted C-Hook

© 2024 Buzz Solutions

Insulator Flashing, Rusted C-Hook, Structure Rusting

Insulator Damage

9

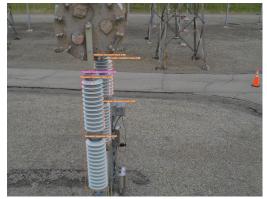
Challenges

*Lack of publicly available critical infrastructure image data

Lack of data capture standardization: Data being captured in different formats, camera resolutions, angles and other variabilities

Dataset imbalance: Lack of enough "faulty" data

•Lack of analysis standardization: Manual inspection analysis is subjective


Generative AI and synthetic data solutions

Generative AI for substations

- Creating edge cases training sets (fire, smoke, animals, etc.) using Gen Al
- Training models based on simulated substation scenarios
- Transfer learning

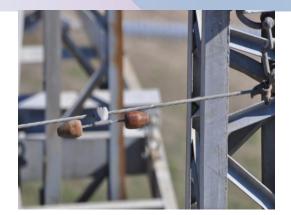
•

.

Rigorous testing and active learning

Synthetic data generation

- Balancing data set classes using synthetic data generation models
- Data is captured through various modes (drones, helicopters, ground vehicles, etc.)
- Synthetic data generation and augmentation used to standardize data

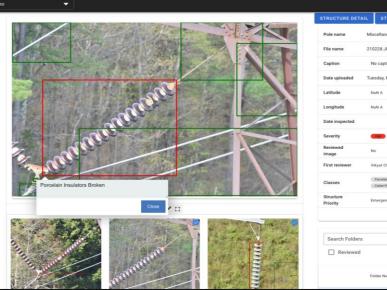


Generative AI and synthetic data solutions

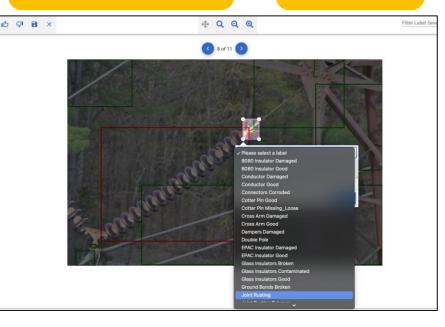
Generative AI for powerlines

- Generated differing backgrounds for less frequent classes
- Generated defects and anomalies for less frequent classes (such as rust, wooden cracks, etc.)
- Transfer learning
- Rigorous testing and active learning

Synthetic data generation


- Synthetically generated less frequent classes to enrich and balance training data
- Synthetically augmented the data to filter out noise, provide standardization in the imagery and create better training data points for images lacking quality

Lack of analysis standardization: Human-in-the-loop


Al predictions and recommendations Subject matter expert review, edits, additions and feedback on predictions

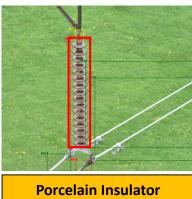
STRUCTURE NOTE Miscellaneous 210228.JPG No caption has been assigned to t Tuesday, May 10th 2022, 11:24:26 Vikyat Chaudhry Prevaluin Instidutors Broken (1) Cotter Pin Good (1) Emergency Unr Unr Review Folder Name

Feedback saved/recorded and continuous AI retraining (Active learning)

Advantages

- Generative AI solutions for substations helped us curate training data for classes that we had no examples for
- Generative AI and synthetic data models helped us increase our accuracy metrics (mAP) for less frequent classes for both powerline and substation models
- Synthetic data generation models helped us augment low quality imagery and use that as training data
- Synthetic data models helped us standardize imagery collected in the field with variabilities (resolutions, angles, mode of capture, etc.)
- Human-in-the-loop workflow helped us with standardizing manual inspection workflow of inspectors and making it less subjective

Successful Use Cases



New York Power Authority (NYPA) use case

Problem:

- > NYPA building an in-house drone program to inspect 1,400 miles of power lines annually
- NYPA needs to use automation to manage and analyze millions of visual data points captured annually
- NYPA wants to improve cost and time efficiency

Porcelain Insulato Broken

Ground Bonds Broken

Saved significant analysis time by delivering highly accurate algorithms

Faster decision-making as results integrated into Media Hub and Work Order Management System

Tracked assets (both healthy and anomalous) for optimized time-to-maintenance

•Reduced risk of outages and critical component failures with quick analysis

Flashing, Conductor

Damaged, Rusted C-Hook


Southern California Edison (SCE) use case

Problem:

SCE needs a 24/7 automated monitoring solution for substations

SCE needs to prevent theft, break-ins and equipment damage

Equipment fire and smoke

 High energy events
 © 20
 Equipment thermal condition

<u>The Value</u>

Reduced O&M costs with immediate ROI for workforce

Improved maintenance productivity with informed decisionmaking

Reduced unnecessary truck rolls and improved safety on site

•Mitigated risks of vandalism and physical security threats

Conclusions

- Computer vision modeling can be applied to power utility use cases and inspection imagery with high degree of precision
- Synthetic data modeling can be used to augment imagery that is lacking standardization during data collection
- Generative AI modeling can be used to enhance your training data for classes that are edge cases and don't frequently occur
- Synthetic data generation can be effectively used to help with class imbalance within your training data and hence improve your accuracy metrics
- The key to building an effective and value driven computer vision AI solution is to understand the industry use case, work with subject matter experts and leverage data.
- Remember that the solutions are out there, you just have to apply them effectively!

Resources

- Buzz Solutions website: <u>https://buzzsolutions.co/</u>
- Learn how power utilities are looking to leverage and evaluate AI solutions: <u>https://www.unite.ai/finding-real-partnerships-how-utility-companies-are-evaluating-artificial-intelligence-vendors/</u>
- Learn how "real" and "synthetic" data is being used for power line inspections: <u>https://energycentral.com/c/pip/keeping-it-real-data%E2%80%99s-critical-role-optimizing-power-utility-infrastructure</u>
- Learn how power utilities are adopting and scaling AI solutions: <u>https://www.tdworld.com/smart-utility/grid-security/article/21284605/adopting-ai-is-just-the-beginning-for-utility-companies</u>
- Learn a bit more about the speaker: <u>https://medium.com/authority-magazine/green-tech-vikhyat-chaudhry-of-buzz-solutions-on-how-their-technology-will-make-an-important-51ca3863e023</u>

Thank you!

Contact: <u>info@buzzsolutions.co</u> <u>vikhyat@buzzsolutions.co</u>

