“Caffe to Zynq: State-of-the-Art Machine Learning Inference Performance in Less Than 5 Watts,” a Presentation from Xilinx

Vinod Kathail, Distinguished Engineer and leader of the Embedded Vision team at Xilinx, presents the "Caffe to Zynq: State-of-the-Art Machine Learning Inference Performance in Less Than 5 Watts" tutorial at the May 2017 Embedded Vision Summit.

Machine learning research is advancing daily with new network architectures, making it difficult to choose the best CNN algorithm for a particular application. With this rapid rate of change in algorithms, embedded system developers who require high performance and low power consumption are increasingly considering Zync SoCs. Zynq SoCs are ideal for efficient CNN implementation as they allow creation of custom network circuitry in hardware, tuned exactly to the needs of the algorithm. The result is state-of-the-art performance-per-watt that outstrips CPU- and GPU-based embedded systems. In this talk, Kathail presents a method for easily migrating a CNN running in Caffe to an efficient Zynq-based embedded vision system utilizing Xilinx’s new reVISION software stack.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top