“Approaches for Energy Efficient Implementation of Deep Neural Networks,” a Presentation from MIT

Vivienne Sze, Associate Professor at MIT, presents the “Approaches for Energy Efficient Implementation of Deep Neural Networks” tutorial at the May 2018 Embedded Vision Summit.

Deep neural networks (DNNs) are proving very effective for a variety of challenging machine perception tasks. But these algorithms are very computationally demanding. To enable DNNs to be used in practical applications, it’s critical to find efficient ways to implement them.

This talk explores how DNNs are being mapped onto today’s processor architectures, and how these algorithms are evolving to enable improved efficiency. Sze explores the energy consumption of commonly used CNNs versus their accuracy, and provides insights on “energy-aware” pruning of these networks.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top