“Processor Options for Edge Inference: Options and Trade-offs,” a Presentation from Micron Technology

Raj Talluri, Senior Vice President and General Manager of the Mobile Business Unit at Micron Technology, presents the "Processor Options for Edge Inference: Options and Trade-offs" tutorial at the May 2019 Embedded Vision Summit.

Thanks to rapid advances in neural network algorithms, we’ve made tremendous progress in developing robust solutions for numerous computer vision tasks. Face detection, face recognition, object identification, object tracking, lane marking detection and pedestrian detection are just a few examples of challenging visual perception tasks where deep neural networks are providing superior solutions to traditional computer vision algorithms.

Compared with traditional algorithms, deep neural networks rely on a very different computational model. As a result, the types of processor architectures being used for deep neural networks are also quite different from those used in the past.

In this talk, Talluri explores the diverse processor architecture approaches that are gaining popularity in machine learning- based embedded vision applications and discusses their strengths and weaknesses in general, and in the context of specific applications.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top