Pete Warden, Staff Research Engineer and TensorFlow Lite development lead at Google, presents the "Using TensorFlow Lite to Deploy Deep Learning on Cortex-M Microcontrollers" tutorial at the May 2019 Embedded Vision Summit.
Is it possible to deploy deep learning models on low-cost, low-power microcontrollers? While it may be surprising, the answer is a definite “yes”! In this talk, Warden explains how the new TensorFlow Lite framework enables creating very lightweight DNN implementations suitable for execution on microcontrollers. He illustrates how this works using an example of a 20 Kbyte DNN model that performs speech wake word detection, and discusses how this generalizes to image-based use cases. Warden introduces TensorFlow Lite, and explores the key steps in implementing lightweight DNNs, including model design, data gathering, hardware platform choice, software implementation and optimization.