“Efficient Deployment of Quantized ML Models at the Edge Using Snapdragon SoCs,” a Presentation from Qualcomm

Felix Baum, Director of Product Management for AI Software at Qualcomm, presents the “Efficient Deployment of Quantized ML Models at the Edge Using Snapdragon SoCs” tutorial at the May 2019 Embedded Vision Summit.

Increasingly, machine learning models are being deployed at the edge, and these models are getting bigger. As a result, we are hitting the constraints of edge devices: bandwidth, performance and power. One way to reduce ML computation demands and increase power efficiency is quantization—a set of techniques that reduce the number of bits needed, and hence reduce bandwidth, computation and storage requirements.

Qualcomm Snapdragon SoCs provide a robust hardware solution for deploying ML applications in embedded and mobile devices. Many Snapdragon SoCs incorporate the Qualcomm Artificial Intelligence Engine, comprised of hardware and software components to accelerate on-device ML.

In this talk, Baum explores the performance and accuracy offered by the accelerator cores within the AI Engine. He also highlights the tools and techniques Qualcomm offers for developers targeting these cores, utilizing intelligent quantization to deliver optimal performance with low power consumption while maintaining algorithm accuracy.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top