“Designing Bespoke CNNs for Target Hardware,” a Presentation from StradVision

Woonhyun Nam, Algorithms Director at StradVision, presents the “Designing Bespoke CNNs for Target Hardware” tutorial at the September 2020 Embedded Vision Summit.

Due to the great success of deep neural networks (DNNs) in computer vision and other machine learning applications, numerous specialized processors have been developed to execute these algorithms with reduced cost and power consumption. The diverse range of specialized processors becoming available create great opportunities to deploy DNNs in new applications. But they also create challenges, as a DNN topology specifically designed for one processor may not run efficiently on a different processor.

For developers of DNNs that run on multiple processor targets, the effort required to optimize the DNN for each processor can be prohibitive. In this talk, Nam explains cost-effective techniques that transform DNN layers to other layer types to better fit a specific processor, without the need to retrain from scratch. He also presents quantization and structured sparsification techniques which reduce model size and computation significantly. Nam discusses several case studies in the context of object detection and segmentation.

See here for a PDF of the slides.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top