Geneva, July 26, 2021 – STMicroelectronics has expanded the variety of machine-learning techniques available to users of the STM32Cube.AI development environment, giving extra flexibility to solve classification, clustering, and novelty-detection challenges as efficiently as possible.
In addition to enabling development of neural networks for edge inference on STM32* microcontrollers (MCUs), the latest STM32Cube.AI release (version 7.0) supports new supervised and semi-supervised methods that work with smaller data sets and fewer CPU cycles. These include isolation forest (iForest) and One Class Support Vector Machine (OC SVM) for novelty detection and K-means and SVM Classifier algorithms for classification which users can now implement without laborious manual coding.
The addition of these classical machine-learning algorithms on top of neural networks helps developers solve their challenges more quickly by enabling fast turnaround time with easy-to-use techniques to convert, validate, and deploy various types of models on STM32 microcontrollers.
STM32Cube.AI lets developers drive machine-learning workloads from the cloud into STM32-based edge devices to reduce latency, save energy, increase cloud utilization, and safeguard privacy by minimizing data exchanges over the Internet. Now with extra flexibility to choose the most efficient machine-learning techniques for on-device analytics, STM32 MCUs are ideal for always-on use cases and smart battery-powered applications.
The new STM32Cube.AI version 7.0 is ready to download free of charge now from www.st.com.
* STM32 is a registered and/or unregistered trademark of STMicroelectronics International NV or its affiliates in the EU and/or elsewhere. In particular, STM32 is registered in the US Patent and Trademark Office.