“Case Study: Facial Detection and Recognition for Always-On Applications,” a Presentation from Synopsys

Jamie Campbell, Product Marketing Manager for Embedded Vision IP at Synopsys, presents the “Case Study: Facial Detection and Recognition for Always-On Applications” tutorial at the May 2021 Embedded Vision Summit.

Although there are many applications for low-power facial recognition in edge devices, perhaps the most challenging to design are always-on, battery-powered systems that use facial recognition for access control. Laptop, tablet and cellphone users expect hands-free and instantaneous facial recognition. This means the electronics must be always on, constantly looking to detect a face, and then ready to pull from a data set to recognize the face.

This presentation describes the challenges of moving traditional facial detection neural networks to the edge. It explores a case study of a face recognition access control application requiring continuous operation and extreme energy efficiency. Finally, it describes how the combination of Synopsys DesignWare ARC EM and EV processors provides low-power, efficient DSP and CNN acceleration for this application.

See here for a PDF of the slides.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top