“Applying the Right Deep Learning Model with the Right Data for Your Application,” a Presentation from Vision Elements

Hila Blecher-Segev, Computer Vision and AI Research Associate at Vision Elements, presents the “Applying the Right Deep Learning Model with the Right Data for Your Application” tutorial at the May 2021 Embedded Vision Summit.

Deep learning has made a huge impact on a wide variety of computer vision applications. But while the capabilities of deep neural networks are impressive, understanding how to best apply them is not straightforward. In this talk, Blecher-Segev highlights key questions that must be answered when considering incorporating a deep neural network into a vision application.

What type of data will be most beneficial for the task? Should the DNN use other types of data in addition to images? How should the data be annotated? What classes should be defined? What is the minimum amount of data needed for the network to be generalized and robust? What algorithmic approach should we use for our task (classification, regression or segmentation)? What type of network should we choose (FCN, DCNN, RNN, GAN)? Blecher-Segev explains the options and trade-offs, and maps out a process for making good choices for a specific application.

See here for a PDF of the slides.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top