“A Practical Guide to Getting the DNN Accuracy You Need and the Performance You Deserve,” a Presentation from Qualcomm

Felix Baum, Director of Product Management at Qualcomm, presents the “Practical Guide to Getting the DNN Accuracy You Need and the Performance You Deserve” tutorial at the May 2022 Embedded Vision Summit.

Every day, developers struggle to take DNN workloads that were originally developed on workstations and migrate them to run on edge devices. Whether the application is in mobile, compute, IoT, XR or automotive, most AI developers start their algorithm development in the cloud or on a workstation and later migrate to on-device as an afterthought. Qualcomm is helping these developers on multiple fronts—democratizing AI at the edge by supporting frameworks and data types that developers are most familiar with, and at the same time building a set of tools to assist sophisticated developers who are taking extra steps to extract the best performance and power efficiency.

In this session, Baum presents the workflow and steps for effectively migrating DNN workloads to the edge. He discusses quantization issues, explore how the accuracy of models affects performance and power and outline the Qualcomm tools that help developers successfully launch new use cases on mobile and other edge devices.

See here for a PDF of the slides.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top