Face Recognition

“Techniques for Efficient Implementation of Deep Neural Networks,” a Presentation from Stanford

Song Han, graduate student at Stanford, delivers the presentation "Techniques for Efficient Implementation of Deep Neural Networks" at the March 2016 Embedded Vision Alliance Member Meeting. Song presents recent findings on techniques for the efficient implementation of deep neural networks.

“Techniques for Efficient Implementation of Deep Neural Networks,” a Presentation from Stanford Read More +

Tractica-Logo-e1431719018493

Deep Learning Use Cases for Computer Vision (Download)

Six Deep Learning-Enabled Vision Applications in Digital Media, Healthcare, Agriculture, Retail, Manufacturing, and Other Industries The enterprise applications for deep learning have only scratched the surface of their potential applicability and use cases.  Because it is data agnostic, deep learning is poised to be used in almost every enterprise vertical… Deep Learning Use Cases for

Deep Learning Use Cases for Computer Vision (Download) Read More +

Figure1

Using Convolutional Neural Networks for Image Recognition

This article was originally published at Cadence's website. It is reprinted here with the permission of Cadence. Convolutional neural networks (CNNs) are widely used in pattern- and image-recognition problems as they have a number of advantages compared to other techniques. This white paper covers the basics of CNNs including a description of the various layers

Using Convolutional Neural Networks for Image Recognition Read More +

Vision in Wearable Devices: Enhanced and Expanded Application and Function Choices

A version of this article was originally published at EE Times' Embedded.com Design Line. It is reprinted here with the permission of EE Times. Thanks to the emergence of increasingly capable and cost-effective processors, image sensors, memories and other semiconductor devices, along with robust algorithms, it's now practical to incorporate computer vision into a wide

Vision in Wearable Devices: Enhanced and Expanded Application and Function Choices Read More +

idlogo2

Practical Computer Vision Enables Digital Signage with Audience Perception

This article was originally published at Information Display Magazine. It is reprinted here with the permission of the Society of Information Display. Signs that see and understand the actions and characteristics of individuals in front of them can deliver numerous benefits to advertisers and viewers alike.  Such capabilities were once only practical in research labs

Practical Computer Vision Enables Digital Signage with Audience Perception Read More +

Figure2

Smart In-Vehicle Cameras Increase Driver and Passenger Safety

This article was originally published at John Day's Automotive Electronics News. It is reprinted here with the permission of JHDay Communications. Cameras located in a vehicle's interior, coupled with cost-effective and power-efficient processors, can deliver abundant benefits to drivers and passengers alike. By Brian Dipert Editor-in-Chief Embedded Vision Alliance Tom Wilson Vice President, Business Development

Smart In-Vehicle Cameras Increase Driver and Passenger Safety Read More +

nvidia

Accelerate Machine Learning with the cuDNN Deep Neural Network Library

This article was originally published at NVIDIA's developer blog. It is reprinted here with the permission of NVIDIA. By Larry Brown Solution Architect, NVIDIA Machine Learning (ML) has its origins in the field of Artificial Intelligence, which started out decades ago with the lofty goals of creating a computer that could do any work a

Accelerate Machine Learning with the cuDNN Deep Neural Network Library Read More +

johnday-blog

Improved Vision Processors, Sensors Enable Proliferation of New and Enhanced ADAS Functions

This article was originally published at John Day's Automotive Electronics News. It is reprinted here with the permission of JHDay Communications. Thanks to the emergence of increasingly capable and cost-effective processors, image sensors, memories and other semiconductor devices, along with robust algorithms, it's now practical to incorporate computer vision into a wide range of embedded

Improved Vision Processors, Sensors Enable Proliferation of New and Enhanced ADAS Functions Read More +

October 2013 Embedded Vision Summit Technical Presentation: “Better Image Understanding Through Better Sensor Understanding,” Michael Tusch, Apical

Michael Tusch, Founder and CEO of Apical Imaging, presents the "Better Image Understanding Through Better Sensor Understanding" tutorial within the "Front-End Image Processing for Vision Applications" technical session at the October 2013 Embedded Vision Summit East. One of the main barriers to widespread use of embedded vision is its reliability. For example, systems which detect

October 2013 Embedded Vision Summit Technical Presentation: “Better Image Understanding Through Better Sensor Understanding,” Michael Tusch, Apical Read More +

September 2013 Qualcomm UPLINQ Conference Presentation: “Accelerating Computer Vision Applications with the Hexagon DSP,” Eric Gregori, BDTI

Eric Gregori, Senior Software Engineer at BDTI, presents the "Accelerating Computer Vision Applications with the Hexagon DSP" tutorial at the September 2013 Qualcomm UPLINQ Conference. Smartphones, tablets and embedded systems increasingly use sophisticated vision algorithms to deliver capabilities like augmented reality and gesture user interfaces. Since vision algorithms are computationally demanding, a key challenge when

September 2013 Qualcomm UPLINQ Conference Presentation: “Accelerating Computer Vision Applications with the Hexagon DSP,” Eric Gregori, BDTI Read More +

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top