Multimodal

An Easy Introduction to Multimodal Retrieval-augmented Generation for Video and Audio

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. Building a multimodal retrieval augmented generation (RAG) system is challenging. The difficulty comes from capturing and indexing information from across multiple modalities, including text, images, tables, audio, video, and more. In our previous post, An Easy Introduction […]

An Easy Introduction to Multimodal Retrieval-augmented Generation for Video and Audio Read More +

Computer Vision Pipeline v2.0

This blog post was originally published at Tenyks’ website. It is reprinted here with the permission of Tenyks. In the realm of computer vision, a shift is underway. This article explores the transformative power of foundation models, digging into their role in reshaping the entire computer vision pipeline. ‍It also demystifies the hype behind the

Computer Vision Pipeline v2.0 Read More +

Virtual and Augmented Reality: The Rise and Drawbacks of AR

While being closed off from the real world is an experience achievable with virtual reality (VR) headsets, augmented reality (AR) offers images and data combined with real-time views to create an enriched and computing-enhanced experience. IDTechEx‘s portfolio of reports, including “Optics for Virtual, Augmented and Mixed Reality 2024-2034: Technologies, Players and Markets“, explore the latest

Virtual and Augmented Reality: The Rise and Drawbacks of AR Read More +

An Easy Introduction to Multimodal Retrieval-augmented Generation

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. A retrieval-augmented generation (RAG) application has exponentially higher utility if it can work with a wide variety of data types—tables, graphs, charts, and diagrams—and not just text. This requires a framework that can understand and generate responses

An Easy Introduction to Multimodal Retrieval-augmented Generation Read More +

“Using Computer Vision-powered Robots to Improve Retail Operations,” a Presentation from Simbe Robotics

Durgesh Tiwari, VP of Hardware Systems, R&D at Simbe Robotics, presents the “Using Computer Vision-powered Robots to Improve Retail Operations” tutorial at the December 2024 Edge AI and Vision Innovation Forum. In this presentation, you’ll learn how Simbe Robotics’ AI- and CV-enabled robot, Tally, provides store operators with real-time intelligence to improve inventory management, streamline

“Using Computer Vision-powered Robots to Improve Retail Operations,” a Presentation from Simbe Robotics Read More +

Amid the Rise of LLMs, is Computer Vision Dead?

This blog post was originally published at Tenyks’ website. It is reprinted here with the permission of Tenyks. The field of computer vision has seen incredible progress, but some believe there are signs it is stalling. At the International Conference on Computer Vision 2023 workshop “Quo Vadis, Computer Vision?”, researchers discussed what’s next for computer

Amid the Rise of LLMs, is Computer Vision Dead? Read More +

“Vision Language Models for Regulatory Compliance, Quality Control and Safety Applications,” a Presentation from Camio

Carter Maslan, CEO of Camio, presents the “Vision Language Models for Regulatory Compliance, Quality Control and Safety Applications” tutorial at the December 2024 Edge AI and Vision Innovation Forum. In this presentation, you’ll learn how vision language models interpret policy text to enable much more sophisticated understanding of scenes and human behavior compared with current-generation

“Vision Language Models for Regulatory Compliance, Quality Control and Safety Applications,” a Presentation from Camio Read More +

Snapdragon Summit’s AI Highlights: A Look at the Future of On-device AI

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. Qualcomm Technologies sets new standards in AI performance for its latest mobile, automotive and Qualcomm AI Hub advancements Our annual Snapdragon Summit wrapped up with exciting new announcements centered on the future of on-device artificial intelligence (AI).

Snapdragon Summit’s AI Highlights: A Look at the Future of On-device AI Read More +

How to Accelerate Larger LLMs Locally on RTX With LM Studio

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. GPU offloading makes massive models accessible on local RTX AI PCs and workstations. Editor’s note: This post is part of the AI Decoded series, which demystifies AI by making the technology more accessible, and showcases new hardware,

How to Accelerate Larger LLMs Locally on RTX With LM Studio Read More +

Introducing the First AMD 1B Language Models: AMD OLMo

This blog post was originally published at AMD’s website. It is reprinted here with the permission of AMD. In recent years, the rapid development of artificial intelligence technology, especially the progress in large language models (LLMs), has garnered significant attention and discussion. From the emergence of ChatGPT to subsequent models like GPT-4 and Llama, these

Introducing the First AMD 1B Language Models: AMD OLMo Read More +

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top