Vision Algorithms

Vision Algorithms for Embedded Vision

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language. Some of the pixel-processing operations (ex: spatial filtering) have changed very little in the decades since they were first implemented on mainframes. With today’s broader embedded vision implementations, existing high-level algorithms may not fit within the system constraints, requiring new innovation to achieve the desired results.

Some of this innovation may involve replacing a general-purpose algorithm with a hardware-optimized equivalent. With such a broad range of processors for embedded vision, algorithm analysis will likely focus on ways to maximize pixel-level processing within system constraints.

This section refers to both general-purpose operations (ex: edge detection) and hardware-optimized versions (ex: parallel adaptive filtering in an FPGA). Many sources exist for general-purpose algorithms. The Embedded Vision Alliance is one of the best industry resources for learning about algorithms that map to specific hardware, since Alliance Members will share this information directly with the vision community.

General-purpose computer vision algorithms

Introduction To OpenCV Figure 1

One of the most-popular sources of computer vision algorithms is the OpenCV Library. OpenCV is open-source and currently written in C, with a C++ version under development. For more information, see the Alliance’s interview with OpenCV Foundation President and CEO Gary Bradski, along with other OpenCV-related materials on the Alliance website.

Hardware-optimized computer vision algorithms

Several programmable device vendors have created optimized versions of off-the-shelf computer vision libraries. NVIDIA works closely with the OpenCV community, for example, and has created algorithms that are accelerated by GPGPUs. MathWorks provides MATLAB functions/objects and Simulink blocks for many computer vision algorithms within its Vision System Toolbox, while also allowing vendors to create their own libraries of functions that are optimized for a specific programmable architecture. National Instruments offers its LabView Vision module library. And Xilinx is another example of a vendor with an optimized computer vision library that it provides to customers as Plug and Play IP cores for creating hardware-accelerated vision algorithms in an FPGA.

Other vision libraries

  • Halcon
  • Matrox Imaging Library (MIL)
  • Cognex VisionPro
  • VXL
  • CImg
  • Filters

Software-defined Vehicles: AI Assistants and Biometrics

Software-defined vehicles (SDVs) represent a combination of automotive features that provide new possibilities for passengers to engage with vehicles. In the report, “Software-Defined Vehicles, Connected Cars, and AI in Cars 2024-2034: Markets, Trends, and Forecasts“, IDTechEx depicts how the cellular connectivity within SDVs can provide access to IoT (Internet of Things) features including OTA (over-the-air)

Read More »

Qualcomm at NeurIPS 2024: Our Groundbreaking Innovations and Cutting-edge Advancements in AI

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. See how Qualcomm AI Research continues to innovate, from platform enhancements to AI fundamentals Neural Information Processing Systems (NeurIPS), the premier machine learning conference, returns in person this year with an impressive 25% acceptance rate, maintaining its

Read More »

“Vision Language Models for Regulatory Compliance, Quality Control and Safety Applications,” a Presentation from Camio

Carter Maslan, CEO of Camio, presents the “Vision Language Models for Regulatory Compliance, Quality Control and Safety Applications” tutorial at the December 2024 Edge AI and Vision Innovation Forum. In this presentation, you’ll learn how vision language models interpret policy text to enable much more sophisticated understanding of scenes and human behavior compared with current-generation

Read More »

Becoming a Computer Vision Engineer

This blog post was originally published at Tenyks’ website. It is reprinted here with the permission of Tenyks. In the journey to become a proficient computer vision engineer, mastering the skills required at each stage of the machine learning life-cycle is crucial. This article introduces a blueprint with the skills a computer vision engineer is

Read More »

NVIDIA Advances Robot Learning and Humanoid Development With New AI and Simulation Tools

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. New Project GR00T workflows and AI world model development technologies to accelerate robot dexterity, control, manipulation and mobility. Robotics developers can greatly accelerate their work on AI-enabled robots, including humanoids, using new AI and simulation tools and

Read More »

The Unseen Cost of Low Quality Large Datasets

This blog post was originally published at Tenyks’ website. It is reprinted here with the permission of Tenyks. Your current data selection process may be limiting your models. ‍Massive datasets come with obvious storage and compute costs. But the two biggest challenges are often hidden: Money and Time. With increasing data volumes, companies have a

Read More »

How to Optimize and Accelerate Machine Vision Processing on GPUs

This blog post was originally published at Geisel Software’s website. It is reprinted here with the permission of Geisel Software. How to optimize and accelerate GPUS: tools, techniques, and real-world scenarios Machine learning (ML) systems analyze tremendous amounts of data to identify hidden patterns and make predictions based on those patterns. This requires a very

Read More »

Top 4 Computer Vision Problems & Solutions in Agriculture — Part 2

This blog post was originally published at Tenyks’ website. It is reprinted here with the permission of Tenyks. In Part 1 of this series we introduced you with the top 4 issues you are likely to encounter in agriculture related datasets for object detection: occlusion, label quality, data imbalance and scale variation. ‍In Part 2

Read More »

On the Brink of the Technological Singularity: Is AI Set to Surpass Human Intelligence?

This blog post was originally published at Geisel Software’s website. It is reprinted here with the permission of Geisel Software. Each advancement in artificial intelligence (AI), machine learning (ML), and contemporary large language models (LLMs), rekindles debates over the technological singularity, a hypothetical future point in time at which technological growth becomes uncontrollable and irreversible,

Read More »

How NVIDIA Jetson AGX Orin Helps Unlock the Power of Surround-view Camera Solutions

This blog post was originally published at e-con Systems’ website. It is reprinted here with the permission of e-con Systems. Autonomous vehicles, such as warehouse robots, rely on precise maneuvering. NVIDIA Jetson AGX Orin™-powered surround-view cameras provide a perfectly synchronized solution, allowing these robots to move freely within designated areas without requiring intensive manual intervention.

Read More »

Developing and Deploying Vision-based Multi-camera Solutions

This blog post was originally published at eInfochips’ website. It is reprinted here with the permission of eInfochips. Over the past several years, with strong advances in technology, Artificial Intelligence (AI) and Machine Learning (ML) capabilities have become available in highly compact chipsets. These chipsets have been adopted across vision solutions including low power wearable

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top