Vision Algorithms

Vision Algorithms for Embedded Vision

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language. Some of the pixel-processing operations (ex: spatial filtering) have changed very little in the decades since they were first implemented on mainframes. With today’s broader embedded vision implementations, existing high-level algorithms may not fit within the system constraints, requiring new innovation to achieve the desired results.

Some of this innovation may involve replacing a general-purpose algorithm with a hardware-optimized equivalent. With such a broad range of processors for embedded vision, algorithm analysis will likely focus on ways to maximize pixel-level processing within system constraints.

This section refers to both general-purpose operations (ex: edge detection) and hardware-optimized versions (ex: parallel adaptive filtering in an FPGA). Many sources exist for general-purpose algorithms. The Embedded Vision Alliance is one of the best industry resources for learning about algorithms that map to specific hardware, since Alliance Members will share this information directly with the vision community.

General-purpose computer vision algorithms

Introduction To OpenCV Figure 1

One of the most-popular sources of computer vision algorithms is the OpenCV Library. OpenCV is open-source and currently written in C, with a C++ version under development. For more information, see the Alliance’s interview with OpenCV Foundation President and CEO Gary Bradski, along with other OpenCV-related materials on the Alliance website.

Hardware-optimized computer vision algorithms

Several programmable device vendors have created optimized versions of off-the-shelf computer vision libraries. NVIDIA works closely with the OpenCV community, for example, and has created algorithms that are accelerated by GPGPUs. MathWorks provides MATLAB functions/objects and Simulink blocks for many computer vision algorithms within its Vision System Toolbox, while also allowing vendors to create their own libraries of functions that are optimized for a specific programmable architecture. National Instruments offers its LabView Vision module library. And Xilinx is another example of a vendor with an optimized computer vision library that it provides to customers as Plug and Play IP cores for creating hardware-accelerated vision algorithms in an FPGA.

Other vision libraries

  • Halcon
  • Matrox Imaging Library (MIL)
  • Cognex VisionPro
  • VXL
  • CImg
  • Filters

Computer Vision Quarterly Snapshot – Q3 2024

Woodside Capital Partners (WCP) is pleased to share its Computer Vision and Vision AI Market Report Q3 2024, authored by Managing Partner Rudy Burger, and Associate Akhilesh Shridar. Hardware startups generally take longer to get a product to market and require more investment than software companies. Hardware has a more complicated distribution and sales structure

Read More »

“Cost-efficient, High-quality AI for Consumer-grade Smart Home Cameras,” a Presentation from Wyze

Lin Chen, Chief Scientist at Wyze, presents the “Cost-efficient, High-quality AI for Consumer-grade Smart Home Cameras” tutorial at the May 2024 Embedded Vision Summit. In this talk, Chen explains how Wyze delivers robust visual AI at ultra-low cost for millions of consumer smart cameras, and how his company is rapidly… “Cost-efficient, High-quality AI for Consumer-grade

Read More »

“Edge AI Optimization on Rails—Literally,” a Presentation from Wabtec

Matthew Pietrzykowski, Principal Data Scientist at Wabtec, presents the “Edge AI Optimization on Rails—Literally” tutorial at the May 2024 Embedded Vision Summit. In this talk, Pietrzykowski shares highlights from his company’s adventures developing computer vision solutions for the rail transportation industry. He begins with an introduction to the types of… “Edge AI Optimization on Rails—Literally,”

Read More »

“Implementing AI/Computer Vision for Corporate Security Surveillance,” a Presentation from VMware

Prasad Saranjame, former Head of Physical Security and Resiliency at VMware, presents the “Implementing AI/Computer Vision for Corporate Security Surveillance” tutorial at the May 2024 Embedded Vision Summit. AI-enabled security cameras offer substantial benefits for corporate security and operational efficiency. However, successful deployment requires thoughtful selection of use cases and… “Implementing AI/Computer Vision for Corporate

Read More »

“Continual Learning thru Sequential, Lightweight Optimization,” a Presentation from Vision Elements

Guy Lavi, Managing Partner at Vision Elements, presents the “Continual, On-the-fly Learning through Sequential, Lightweight Optimization” tutorial at the May 2024 Embedded Vision Summit. In this presentation, Lavi shows how techniques of sequential optimization are applied to enable continual learning during run-time, as new observations flow in. The lightweight nature… “Continual Learning thru Sequential, Lightweight

Read More »

Qualcomm and Mistral AI Partner to Bring New Generative AI Models to Edge Devices

Highlights: Qualcomm announces collaboration with Mistral AI to bring Mistral AI’s models to devices powered by Snapdragon and Qualcomm platforms. Mistral AI’s new state-of-the-art models, Ministral 3B and Ministral 8B, are being optimized to run on devices powered by the new Snapdragon 8 Elite Mobile Platform, Snapdragon Cockpit Elite and Snapdragon Ride Elite, and Snapdragon

Read More »

Why Qualcomm AI Orchestrator is the Key to Next Generation AI Experiences

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. The software will help facilitate your personal preferences, apps and gen AI models to work together and provide revolutionary on-device AI capabilities In the rapidly evolving landscape of generative artificial intelligence (AI) and how we interact with

Read More »

“Multi-object Tracking Systems,” a Presentation from Tryolabs

Javier Berneche, Senior Machine Learning Engineer at Tryolabs, presents the “Multiple Object Tracking Systems” tutorial at the May 2024 Embedded Vision Summit. Object tracking is an essential capability in many computer vision systems, including applications in fields such as traffic control, self-driving vehicles, sports and more. In this talk, Berneche… “Multi-object Tracking Systems,” a Presentation

Read More »

“Improved Navigation Assistance for the Blind via Real-time Edge AI,” a Presentation from Tesla

Aishwarya Jadhav, Software Engineer in the Autopilot AI Team at Tesla, presents the “Improved Navigation Assistance for the Blind via Real-time Edge AI,” tutorial at the May 2024 Embedded Vision Summit. In this talk, Jadhav presents recent work on AI Guide Dog, a groundbreaking research project aimed at providing navigation… “Improved Navigation Assistance for the

Read More »

Qualcomm Announces Multi-year Strategic Collaboration with Google to Deliver Generative AI Digital Cockpit Solutions

Highlights: Qualcomm and Google will leverage Snapdragon Digital Chassis and Google’s in-vehicle technologies to produce a standardized reference framework for development of generative AI-enabled digital cockpits and software-defined vehicles (SDV). Qualcomm to lead go-to-market efforts for scaling and customization of joint solution with the broader automotive ecosystem. Companies’ collaboration demonstrates power of co-innovation, empowering automakers

Read More »

“Using Vision Systems, Generative Models and Reinforcement Learning for Sports Analytics,” a Presentation from Sportlogiq

Mehrsan Javan, Chief Technology Officer at Sportlogiq, presents the “Using Vision Systems, Generative Models and Reinforcement Learning for Sports Analytics” tutorial at the May 2024 Embedded Vision Summit. At a high level, sport analytics systems can be broken into two components: sensory data collection and analytical models that turn sensory… “Using Vision Systems, Generative Models

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top