Vision Algorithms

Vision Algorithms for Embedded Vision

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language

Most computer vision algorithms were developed on general-purpose computer systems with software written in a high-level language. Some of the pixel-processing operations (ex: spatial filtering) have changed very little in the decades since they were first implemented on mainframes. With today’s broader embedded vision implementations, existing high-level algorithms may not fit within the system constraints, requiring new innovation to achieve the desired results.

Some of this innovation may involve replacing a general-purpose algorithm with a hardware-optimized equivalent. With such a broad range of processors for embedded vision, algorithm analysis will likely focus on ways to maximize pixel-level processing within system constraints.

This section refers to both general-purpose operations (ex: edge detection) and hardware-optimized versions (ex: parallel adaptive filtering in an FPGA). Many sources exist for general-purpose algorithms. The Embedded Vision Alliance is one of the best industry resources for learning about algorithms that map to specific hardware, since Alliance Members will share this information directly with the vision community.

General-purpose computer vision algorithms

Introduction To OpenCV Figure 1

One of the most-popular sources of computer vision algorithms is the OpenCV Library. OpenCV is open-source and currently written in C, with a C++ version under development. For more information, see the Alliance’s interview with OpenCV Foundation President and CEO Gary Bradski, along with other OpenCV-related materials on the Alliance website.

Hardware-optimized computer vision algorithms

Several programmable device vendors have created optimized versions of off-the-shelf computer vision libraries. NVIDIA works closely with the OpenCV community, for example, and has created algorithms that are accelerated by GPGPUs. MathWorks provides MATLAB functions/objects and Simulink blocks for many computer vision algorithms within its Vision System Toolbox, while also allowing vendors to create their own libraries of functions that are optimized for a specific programmable architecture. National Instruments offers its LabView Vision module library. And Xilinx is another example of a vendor with an optimized computer vision library that it provides to customers as Plug and Play IP cores for creating hardware-accelerated vision algorithms in an FPGA.

Other vision libraries

  • Halcon
  • Matrox Imaging Library (MIL)
  • Cognex VisionPro
  • VXL
  • CImg
  • Filters

How Qualcomm is Catalyzing Retail’s AI Revolution

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. Retail is embracing innovation — we’ll be showing off examples of these game-changing experiences at NRF 2025 With more places to shop than ever, physical stores are turning to AI and technology for a competitive edge. That

Read More »

DALL-E vs Gemini vs Stability: GenAI Evaluations

This article was originally published at Tenyks’ website. It is reprinted here with the permission of Tenyks. We performed a side-by-side comparison of three models from leading providers in Generative AI for Vision. This is what we found: Despite the subjectivity involved in Human Evaluation, this is the best approach to evaluate state-of-the-art GenAI Vision

Read More »

Harnessing the Power of LLM Models on Arm CPUs for Edge Devices

This blog post was originally published at Digica’s website. It is reprinted here with the permission of Digica. In recent years, the field of machine learning has witnessed significant advancements, particularly with the development of Large Language Models (LLMs) and image generation models. Traditionally, these models have relied on powerful cloud-based infrastructures to deliver impressive

Read More »

AI On the Road: Why AI-powered Cars are the Future

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. AI transforms your driving experience in unexpected ways as showcased by Qualcomm Technologies collaborations As automotive technology rapidly advances, consumers are looking for vehicles that deliver AI-enhanced experiences through conversational voice assistants and sophisticated user interfaces. Automotive

Read More »

Visual Intelligence at the Edge

This blog post was originally published at Au-Zone Technologies’ website. It is reprinted here with the permission of Au-Zone Technologies. Optimizing AI-based video telematics deployments on constrained SoCs platforms The demand for advanced video telematics systems is growing rapidly as companies seek to enhance road safety, improve operational efficiency, and manage liability costs with AI-powered

Read More »

Improving Vision Model Performance Using Roboflow and Tenyks

This blog post was originally published at Tenyks’ website. It is reprinted here with the permission of Tenyks. When improving an object detection model, many engineers focus solely on tweaking the model architecture and hyperparameters. However, the root cause of mediocre performance often lies in the data itself. ‍In this collaborative post between Roboflow and

Read More »

Federated Learning: Risks and Challenges

This blog post was originally published at Digica’s website. It is reprinted here with the permission of Digica. In the first article of our mini-series on Federated Learning (FL), Privacy-First AI: Exploring Federated Learning, we introduced the basic concepts behind the decentralized training approach, and we also presented potential applications in certain domains. Undoubtedly, FL

Read More »

HPC Hardware Market to Grow at 13.6% CAGR to 2035

HPC systems, including supercomputers, outclass all other classes of computing in terms of calculation speed by parallelizing processing over many processors. HPC has long been an integral tool across critical industries, from facilitating engineering modeling to predicting the weather. The AI boom has intensified development in the sector, growing the capabilities of hardware technologies, including

Read More »

Israeli Start-up Visionary.ai Powers the Revolutionary Under-display Camera on the Lenovo Yoga Slim 9i

The long-awaited camera-under-display laptop technology is being launched at CES for the first time on Lenovo Yoga Slim 9i Jan 08, 2025 – JERUSALEM, ISRAEL – Under-display cameras—fully hidden beneath laptop screens—have been an unrealized dream until now. This revolutionary technology enables Lenovo to deliver a sleek, bezel-free design while maintaining exceptional video quality, thanks

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top